Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

583 results about "Linear optics" patented technology

Linear optics is a sub-field of optics, consisting of linear systems, and is the opposite of nonlinear optics. Linear optics includes most applications of lenses, mirrors, waveplates, diffraction gratings, and many other common optical components and systems.

Low noise fiber laser frequency combs device with controllable carrier envelope phase shift frequency

The application provides a low noise fiber laser frequency combs device with controllable carrier envelope phase shift frequency. The low noise fiber laser frequency combs device with controllable carrier envelope phase shift frequency comprises an optical path structure and a circuit structure, wherein the optical path structure comprises an oscillator, an acousto-optic frequency shifter, an optical fiber amplifier, a pulse compressor, an optical fiber spread spectrum device and a coherent heterodyne beat device; and the circuit structure comprises a feed-forward circuit control phase device and a phase-locked loop circuit control repetition frequency device. The fiber laser oscillator can ensure long-time operation of a system, so that the stability of the system is superior to that of a system adopting a solid laser oscillator; through the technologies of optimizing intracavity net dispersion of the fiber oscillator, introducing an inner cavity modulator in the oscillator, adopting the feed-forward acousto-optic frequency shifter, and the like, the low noise fiber laser frequency combs device can be realized; and meanwhile, due to the application of the acousto-optic frequency shifter, the carrier envelope phase shift frequency of the optical frequency combs can be accurately regulated, so that the optical frequency combs device with precise phase position regulation and secular stability is provided for realizing applications such as optical frequency standard, attosecond science and non-linear optics.
Owner:INST OF PHYSICS - CHINESE ACAD OF SCI

Linear optical sampling method and apparatus

A linear optical sampling apparatus, temporally samples a modulated optical signal using the amplitude of the interference of its electric field with the electric field of a laser pulse. The apparatus includes a 90° optical hybrid that combines the optical signal and laser pulse in order to generate two quadratures interference samples SA and SB. A processor compensates for optical and electrical signal handling imperfections in the hybrid, balanced detectors, and A/D converters used in the optical sampling apparatus. The processor numerically scales the two quadratures interference samples SA and SB over a large collection of samples by imposing that the average <SA>=<SB>=0 and <SA2>=<SB2> and then minimizes 2<SA·SB>/(<SA2>+<SB2>)=cos(φB−φA)). This is done by adjusting the phase between the two quadratures (ideally either −π/2 or +π/2) so that cos(φB−φA)) is zero. The processor then generates a demodulated sample signal using the quadratures interference samples SA and SB. According to one feature, the hybrid sets the relative phase between two quadratures of their interferometric component so that the phase sensitivity inherent to linear optics is removed. A variety of hybrid arrangements is disclosed that can be implemented using integrated waveguide technology. The apparatus enables sampling of picosecond pulses up to 640 Gb/s with high sensitivity and temporal resolution.
Owner:ALCATEL-LUCENT USA INC +1

Tunable terahertz radiation source based on difference frequency cherenkov effect and modulation method

The invention relates to the non linear optical frequency conversion. To realize output of high power THz wave which can be continuously tuned, and stable running at room temperature, the technical scheme used by the invention is that: a tunable terahertz radiation source based on difference frequency cherenkov effect is composed of a laser device, a frequency doubling crystal, a double wavelength parametric oscillator, a harmonic mirror, a polarization filter, a combined beam mirror, a column lens and a difference frequency crystal; the harmonic mirror is placed between the frequency doubling crystal and the double wavelength parametric oscillator; the double wavelength parametric oscillator is II type phase matching KTP (Potassium Titanyl Phosphate) crystal OPO (Optical Parametric Oscillator); the polarization filter, the combined beam mirror and the column lens are arranged between the parametric oscillator and the difference frequency crystal; the difference frequency crystal is amagnesium oxide doped lithium niobate crystal with molecular formula of MgO:LiNbO3 or MgO:LN, and the generated THz wave is coupled and output by an Si prism on the side surface of the difference frequency crystal. The tunable terahertz radiation source based on difference frequency cherenkov effect is mainly applied to the optical frequency conversion.
Owner:TIANJIN UNIV

Feature tracking linear optic flow sensor

This invention is a one-dimensional elementary motion detector that measures the linear optical flow in a small subsection of the visual field. This sensor measures motion by tracking the movement of a feature across the visual field and measuring the time required to move from one location to the next. First a one-dimensional image is sampled from the visual field using a linear photoreceptor array. Feature detectors, such as edge detectors, are created with simple circuitry that performs simple computations on photoreceptor outputs. The detection of the feature's location is performed using a winner-take-all (WTA) mechanism on feature detector outputs. Motion detection is the performed by monitoring the location of the high WTA output in time to detect transitions corresponding to motion. The correspondence problem is solved by ignoring transitions to and from the end lines of the WTA output bus. Speed measurement is performed by measuring the time between WTA output transitions. This invention operates in a one-dimensional subspace of the two-dimensional visual field. The conversion of a two-dimensional image section to a one-dimensional image is performed by a specially shaped photoreceptor array which preserves image information in one direction but filters out image information in the perpendicular direction. Thus this sensor measures the projection of the 2-D optical flow vector onto the vector representing the sensor's orientation. By placing several of these sensors in different orientations and using vector arithmetic, the 2-D optical flow vector can be determined.
Owner:THE GOVERNMENT OF THE UNITED STATES OF AMERICA AS REPRESENTED BY THE SEC OF THE NAVY NAVAL RES LAB WASHINGTON

Preparation method of composite ZnO-mesoporous silica nanomaterial

The invention discloses a preparation method of a composite ZnO-mesoporous silica nanomaterial, namely a solvothermal in situ substitution method. The preparation method comprises the following steps of: uniformly mixing silicon-based molecular sieve powder, a ZnO precursor, a doping element and an organic solvent, adding the mixture into a high-pressure reaction kettle, and introducing a shielding gas to the reaction kettle for reaction; filtering the reaction mixture, washing, and drying to obtain dry powder; and heating and calcining the dry powder to obtain the composite ZnO-mesoporous silica nanomaterial. The composite ZnO-mesoporous silica nanomaterial prepared by the preparation method disclosed by the invention has the advantages of uniform ZnO loading, stable properties, excellent optical properties and catalytic properties and strong SHG (second harmonic generation) and TPL (two-photon luminescence) optical properties when used as an excellent catalyst for organic ester synthesis or as a laser nonlinear optical material, and is suitable for being prepared into a purple light-emitting material or a functional polymer additive. The preparation method disclosed by the invention has the advantages of wide and available raw materials, simplicity of operation and advantageous production cost.
Owner:SOUTH CHINA NORMAL UNIVERSITY

Large size potassium strontium borate nonlinear optical crystal, preparation and use thereof

InactiveCN101514492AOptical processing accuracy without special requirementsPolycrystalline material growthFrom frozen solutionsNonlinear optical crystalSpace group
The invention relates to a large size potassium strontium borate nonlinear optical crystal, the preparation and use thereof. The formula of the crystal is: KSr4B3O9, which belongs to rhombic system, the space group is Pna2(1), and the molecular weight is 566.01, and the crystal size is 10-60mmx10-60mmx10-60mm. The preparation contains the following steps of: evenly mixing the potassium strontium borate compound with a fusing assistant, heating, maintaining the constant temperature, cooling to the saturation temperature and obtaining a mixture solution, placing a seed crystal into the mixture solution, lowering the temperature to the saturation temperature to obtain the required crystal, and subsequently extracting the crystal from the liquid level, cooling to room temperature, and finally obtaining the large size potassium strontium borate nonlinear optical crystal. The nonlinear optical effect of the crystal is approximately the same as the KDP, the transparent optical band is 220nm-3000nm. The crystal is simple in operation, low in cost, large in crystal size, short in growth period, less in coating, high in laster damage threshold, good in mechanical property, firm, stable in physicochemical properties, uneasy to deliquescence, convenient for processing and storage, or the like. Accordingly, the nonlinear optical crystal of the invention can be abroadly applied in nonlinear optical devices such as frequency doubler, optical parametric oscillator or the like.
Owner:XINJIANG TECHN INST OF PHYSICS & CHEM CHINESE ACAD OF SCI

Linear optical sampling method and apparatus

A linear optical sampling apparatus, temporally samples a modulated optical signal using the amplitude of the interference of its electric field with the electric field of a laser pulse. The apparatus includes a 90° optical hybrid that combines the optical signal and laser pulse in order to generate two quadratures interference samples SA and SB. A processor compensates for optical and electrical signal handling imperfections in the hybrid, balanced detectors, and A / D converters used in the optical sampling apparatus. The processor numerically scales the two quadratures interference samples SA and SB over a large collection of samples by imposing that the average <SA>=<SB>=0 and <SA2>=<SB2> and then minimizes 2<SA·SB> / (<SA2>+<SB2>) =cos(φB−φA)). This is done by adjusting the phase between the two quadratures (ideally either −π / 2 or +π / 2) so that cos(φB−φA)) is zero. The processor then generates a demodulated sample signal using the quadratures interference samples SA and SB. According to one feature, the hybrid sets the relative phase between two quadratures of their interferometric component so that the phase sensitivity inherent to linear optics is removed. A variety of hybrid arrangements is disclosed that can be implemented using integrated waveguide technology. The apparatus enables sampling of picosecond pulses up to 640 Gb / s with high sensitivity and temporal resolution.
Owner:ALCATEL-LUCENT USA INC +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products