Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

114 results about "Zeroth order" patented technology

Layer-thickness detection methods and apparatus for wafers and the like, and polishing apparatus comprising same

Methods and apparatus are disclosed for detecting a thickness of a surficial layer (e.g., metal or insulating layer) on a workpiece (e.g., semiconductor wafer) during a process for planarizing the layer, so as to stop the process when a suitable process endpoint is reached. Layer thickness is detected based on a spectral-characteristic signal of reflected or transmitted signal light, obtained by directing a probe light onto the surface of the workpiece. Example spectral characteristics are local maxima and minima of signal-light waveform, differences or quotients of the same, a dispersion of the signal-light waveform, a component of a Fourier transform of the signal waveform, a cross-correlation function of the signal waveform. Alternatively, the zeroth order of signal light is selected for measurement, or a spatial coherence length of the probe light is compared with the degree of fineness of the pattern on the surface illuminated with the probe light. An optical model can be determined based on the comparison, and at least one of the layer thickness and the process endpoint is detected by comparing the measured signal-light intensity with the calculated theoretical signal light intensity.
Owner:NIKON CORP

Heterodyne reflectomer for film thickness monitoring and method for implementing

The present invention is directed to a heterodyne reflectometer system and method for obtaining highly accurate phase shift information from heterodyned optical signals, from which extremely accurate film depths can be calculated. A linearly polarized light comprised of two linearly polarized components that are orthogonal to each other, with split optical frequencies, is directed toward a film causing one of the optical polarization components to lag behind the other due to an increase in the optical path in the film for that component. A pair of detectors receives the beam reflected from the film layer and produces a measurement signal, and the beam prior to incidence on the film layer and generates a reference signal, respectively. The measurement signal and reference signal are analyzed by a phase detector for phase shift. The detected phase shift is then fed into a thickness calculator for film thickness results. A grating interferometer may be included with the heterodyne reflectometer system with a grating, which diffracts the reflected beam into zeroth- and first-order bands, which are then detected by separate detectors. A detector receives the zeroth-order beam and generates another measurement signal. Another detector receives the first-order beam and generates a grating signal. The measurement signal from the grating and reference signal may be analyzed by a phase detector for phase shift, which is related to the thickness of the film. Conversely, either measurement signal may be analyzed with the grating signal by a phase detector for detecting a grating phase shift. The refractive index for the film may be calculated from grating phase shift and the heterodyne phase shift. The updated refractive index is then used for calculating thickness.
Owner:VERITY INSTR

Steering of directional sound beams

Apparatus is disclosed for steering a directional audio beam that is self-demodulated from an ultrasound carrier. The apparatus includes means for modulating a carrier signal with an audio signal and means for adjusting the amplitude and phase of at least one of the audio signal and/or the carrier signal to steer the audio beam to a desired direction. The apparatus also includes means for generating an ultrasound beam in the desired direction driven by the modulated carrier signal. The apparatus may include means for weighting the audio and/or carrier signal by a zeroth order Bessel function to synthesize a Bessel distribution source. A corresponding method for steering a directional audio beam is also disclosed. A harmonic generator may be used to generate harmonics of low frequencies in the audio signal. The harmonics may provide (upon demodulation) a psycho-acoustic impression of improved perception of low frequencies. Further, a modulated ultrasonic signal or an unmodulated audio signal may be band-passed into two or more different band-limited signals. The band-limited signals may be amplified and transmitted by ultrasonic transducers having mechanical resonance frequencies substantially equal to a characteristic frequency of the band-limited signals. Ultrasonic processing of the audio signal may include square root methods without generating large numbers of harmonics.
Owner:NANYANG TECH UNIV

Light collection from diffractive displays

A diffractive display system and a method of collecting first order light beams from a diffractive display of the system utilize holographic optical elements (HOEs) to deflect one of two first order diffracted light beams that emerge from each diffracting pixel of the diffractive display, so that the first order diffracted light beams can be separated from the zeroth order light beams. The utilization of the HOEs allows the system to be implemented in a compact optical configuration, without sacrificing any portion of the first order diffracted light. In a first embodiment, the system includes three HOEs that have static diffracting properties that are optimized for red, green and blue lights. For each set of light beams from a diffracting pixel of the diffractive display, the HOEs are holographically configured to deflect only one of the two first order diffracted light beams, such that the deflected first order light beam propagates in the same direction as the other non-deflected first order light beam. In a second embodiment, the system includes three HOEs that have reconfigurable diffracting properties that are also optimized for red, green and blue lights. In a third embodiment, the system further includes a holographic color filter that is comprised of three reconfigurable HOEs to sequentially illuminate the diffractive display with each of the tristimulus color lights.
Owner:HOYA CORP +1

Heterodyne reflectometer for film thickness monitoring and method for implementing

The present invention is directed to a heterodyne reflectometer system and method for obtaining highly accurate phase shift information from heterodyned optical signals, from which extremely accurate film depths can be calculated. A linearly polarized light comprised of two linearly polarized components that are orthogonal to each other, with split optical frequencies, is directed toward a film causing one of the optical polarization components to lag behind the other due to an increase in the optical path in the film for that component. A pair of detectors receives the beam reflected from the film layer and produces a measurement signal, and the beam prior to incidence on the film layer and generates a reference signal, respectively. The measurement signal and reference signal are analyzed by a phase detector for phase shift. The detected phase shift is then fed into a thickness calculator for film thickness results. A grating interferometer may be included with the heterodyne reflectometer system with a grating, which diffracts the reflected beam into zeroth- and first-order bands, which are then detected by separate detectors. A detector receives the zeroth-order beam and generates another measurement signal. Another detector receives the first-order beam and generates a grating signal. The measurement signal from the grating and reference signal may be analyzed by a phase detector for phase shift, which is related to the thickness of the film. Conversely, either measurement signal may be analyzed with the grating signal by a phase detector for detecting a grating phase shift. The refractive index for the film may be calculated from grating phase shift and the heterodyne phase shift. The updated refractive index is then used for calculating thickness.
Owner:VERITY INSTR

Zeroth-order resonator and low-profile zeroth-order resonator omnidirectional circularly polarized antenna

The invention discloses a zeroth-order resonator and a low-profile zeroth-order resonator omnidirectional circularly polarized antenna. The zero-order resonator is composed of a dielectric substrate, a metal patch, a metal floor and a short-circuit pin. The metal patch and the metal floor are respectively adhered on the two relatively parallel surfaces of the dielectric substrate. One end of the short-circuit pin is connected with the metal patch, and the other end is connected with the metal floor. The zeroth-order resonators are arranged at the external side of the radiation type feed network of the antenna in a surrounding way. Phase difference between two polarizations is enabled to be fixed at 90 degrees by the zeroth-order resonators, electric dipoles and magnetic dipoles are constructed by using a mode of circular ring group arrays, and the design of the zeroth-order resonator units and optimization of the circular ring array circularly polarized antenna are separated without considering the phase problem of two mutually perpendicular linear polarization components so that optimization efficiency can be enhanced, system resources can be saved and design efficiency can be enhanced. Besides, the designed omnidirectional circularly polarized antenna has the low-profile characteristic and can be applied to systems with the requirement for the antenna profile.
Owner:GUILIN UNIV OF ELECTRONIC TECH

Method for monitoring film thickness using heterodyne reflectometry and grating interferometry

A linearly polarized light comprised of two linearly polarized components, orthogonal to each other and with split optical frequencies, is directed toward a film. A detector receives the beam prior to incidence on the film layer and generates a reference signal. The reflected beam is diffracted into zeroth- and first-order bands, which are then detected by separate detectors; a measurement signal is generated from the zeroth-order beam and a grating signal from the first-order beam. The zeroth-order beam's measurement signal and reference signal are analyzed by a phase detector for a heterodyne phase shift, and an accurate film thickness calculated from this phase shift by knowing a refractive index for the film. Additionally, the zeroth-order beam measurement signal is analyzed with the grating signal by a phase detector for detecting a grating phase shift induced by the grating. The refractive index for the film can then be calculated directly from grating phase shift and the heterodyne phase shift for the grating pitch, and the beam's wavelength and incidence angle on the film of the measurement apparatus. Using the refractive index and heterodyne phase shift, the film's thickness is determined for the apparatus. Conversely, the thickness of the film can be calculated independent of the refractive index, and without knowing the film's refractive index, directly from the grating phase shift and the heterodyne phase shift for the apparatus.
Owner:VERITY INSTR
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products