Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

32results about How to "Improve routability" patented technology

Fault tolerant operation of field programmable gate arrays

A method of fault tolerant operation of field programmable gate arrays (FPGAs), whether as an embedded portion of a system-on-chip or other application specific integrated circuit, utilizing incremental reconfiguration during normal on-line operation includes configuring an FPGA into a self-testing area and a working area. Within the self-testing area, programmable interconnect resources of the FPGA are tested for faults. Upon the detection of one or more faults within the interconnect resources, the faulty interconnect resources are identified and a determination is made whether utilization of the faulty interconnect resources is compatible with an intended operation of the FPGAs. If the faulty interconnect resources are compatible with the intended operation of the FPGA, utilization of the faulty interconnect resource is allowed to provide fault tolerant operation of the FPGA. If the faulty interconnect resources are not compatible with the intended operation of the FPGA, on the other hand, a multi-step reconfiguration process may be initiated which attempts to minimize the effects of each reconfiguration on the overall performance of the FPGA. In an alternate embodiment, the entire FPGA may be configured as one or more self-testing areas during off-line testing, such as manufacturing testing.
Owner:JUNIVERSITI OF NORT KAROLINA EHT SHARLOTT +1

Hierarchy-based analytical placement method for an integrated circuit

A placer produces a global placement plan specifying positions of cell instances to be interconnected by nets within an integrated circuit (IC) by initially clusterizing cell instances to form a pyramidal hierarchy of blocks and generating an initial global placement plan specifying a position of each block at a highest level of the hierarchy. The placer then declusterizes the global placement plan by replacing the highest level blocks with their component blocks and then improves the routability of the global placement plan by iteratively moving specified block positions in directions and by distances dynamically determined by analyzing the global placement plan and an objective function having a total wirelength term and having a bin density term reflecting density of blocks in specified areas (bins) of the IC. The placer iteratively repeats the declusterization and routability improvement process until the global placement plan specifies positions of all blocks residing at the lowest level of the hierarchy, with weighting of the bin density term adjusted when necessary during each iteration of the routability improvement process to provide sufficient white space in each bin. The placer employs a look-ahead legalization technique to move low level blocks to legal positions during later iterations of the plan improvement process.
Owner:SYNOPSYS INC

Block connector splitting in logic block of a field programmable gate array

An FPGA architecture has top, middle and low levels. The top level of the architecture is an array of the B16x16 tiles arranged in a rectangular array and enclosed by I/O blocks on the periphery. On each of the four sides of a B16x16 tile, and also associated with each of the I/O blocks is a freeway routing channel. A B16x16 tile in the middle level of hierarchy is a sixteen by sixteen array of B1 blocks. The routing resources in the middle level of hierarchy are expressway routing channels M1, M2, and M3 including groups of interconnect conductors. At the lowest level of the semi-hierarchical FPGA architecture, there are block connect (BC) routing channels, local mesh (LM) routing channels, and direct connect (DC) interconnect conductors to connect the logic elements to further routing resources. Within the B1 block, a horizontal BC routing channel is disposed between two upper and two lower clusters of devices, and a vertical BC routing channel is disposed between two clusters of devices on the left side of the B1 block and two clusters of devices on the right side of the B1 block. The BC routing channel forms intersections with the inputs and outputs of the devices in the clusters. The horizontal BC routing channel forms a first diagonally hardwired connection with a routing channel that effectively sends the horizontal BC routing channel in a vertical direction. A second diagonally hardwired connection pairwise shorts the horizontal and vertical BC routing channels to provide dual accessibility to the logic resources in the B1 block from more than one side. Disposed between the first diagonally hardwired connection and the second diagonally hardwired connection is a BC splitting extension which provides a programmable one-to-one coupling between the interconnect conductors of the horizontal BC routing channel on either side of the BC splitting extension.
Owner:MICROSEMI SOC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products