Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

153results about How to "Performed quickly" patented technology

Automatic sound field correcting device and computer program therefor

An automatic sound field correcting device executes a signal process to the plurality of audio signals on respective correspondent signal transmission paths, and outputs them to a plurality of correspondent speakers to correct sound characteristics on the respective signal transmission paths. Namely, a measurement signal is supplied to each signal transmission path, and a measurement sound corresponding to it is outputted from the speaker to a sound space. The outputted measurement sound is detected as a detecting signal. The frequency characteristic of the audio signal on each signal transmission path is corrected by an equalizer, and a gain value of the equalizer is determined by a correction amount determining unit. A frequency characteristics correction is performed predetermined times. At a first correction, the correction amount determining unit determines the correction amount by performing a frequency analysis, based on the detecting signal, i.e. base on the detecting signal corresponding to the measurement sound actually outputted to the sound space. On the contrary, at and after a second correction, the correction amount determining unit determines the correction amount based on the detecting signal or an output signal of the equalizer. Namely, at and after the second correction, the output signal of the equalizer is supplied to the correction amount determining unit in a signal processing circuit as the need arises, and the frequency characteristics correction is performed without actually outputting the measurement sound to the sound space.
Owner:ONKYO KK D B A ONKYO CORP

Methods and Apparatus for Modeling Electromagnetic Scattering Properties of Microscopic Structures and Methods and Apparatus for Reconstruction of Microscopic Structures

Improved convergence in the volume-integral method (VIM) of calculating electromagnetic scattering properties of a structure is achieved by numerically solving a volume integral equation for a vector field, F, rather than the electric field, E. The vector field, F, may be related to the electric field, E, by a change of basis, and may be continuous at material boundaries where the electric field, E, has discontinuities. Convolutions of the vector field, F, are performed using convolution operators according the finite Laurent rule (that operate according to a finite discrete convolution), which allow for efficient matrix-vector products via 1D and/or 2D FFTs (Fast Fourier Transforms). An invertible convolution-and-change-of-basis operator, C, is configured to transform the vector field, F, to the electric field, E, by performing a change of basis according to material and geometric properties of the periodic structure. After solving the volume integral for the vector field, F, an additional post-processing step may be used to obtain the electric field, E, from the vector field, F. The vector field, F, may be constructed from a combination of field components of the electric field, E, and the electric flux density, D, by using a normal-vector field, n, to filter out continuous components.
Owner:ASML NETHERLANDS BV

Automatic sound field correcting device and computer program therefor

An automatic sound field correcting device executes a signal process to the plurality of audio signals on respective correspondent signal transmission paths, and outputs them to a plurality of correspondent speakers to correct sound characteristics on the respective signal transmission paths. Namely, a measurement signal is supplied to each signal transmission path, and a measurement sound corresponding to it is outputted from the speaker to a sound space. The outputted measurement sound is detected as a detecting signal. The frequency characteristic of the audio signal on each signal transmission path is corrected by an equalizer, and a gain value of the equalizer is determined by a correction amount determining unit. A frequency characteristics correction is performed predetermined times. At a first correction, the correction amount determining unit determines the correction amount by performing a frequency analysis, based on the detecting signal, i.e. base on the detecting signal corresponding to the measurement sound actually outputted to the sound space. On the contrary, at and after a second correction, the correction amount determining unit determines the correction amount based on the detecting signal or an output signal of the equalizer. Namely, at and after the second correction, the output signal of the equalizer is supplied to the correction amount determining unit in a signal processing circuit as the need arises, and the frequency characteristics correction is performed without actually outputting the measurement sound to the sound space.
Owner:ONKYO KK D B A ONKYO CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products