Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

669 results about "Earth's magnetic field" patented technology

Earth's magnetic field, also known as the geomagnetic field, is the magnetic field that extends from the Earth's interior out into space, where it interacts with the solar wind, a stream of charged particles emanating from the Sun. The magnetic field is generated by electric currents due to the motion of convection currents of molten iron in the Earth's outer core: these convection currents are caused by heat escaping from the core, a natural process called a geodynamo. The magnitude of the Earth's magnetic field at its surface ranges from 25 to 65 microteslas (0.25 to 0.65 gauss). As an approximation, it is represented by a field of a magnetic dipole currently tilted at an angle of about 11 degrees with respect to Earth's rotational axis, as if there were a bar magnet placed at that angle at the center of the Earth. The North geomagnetic pole, currently located near Greenland in the northern hemisphere, is actually the south pole of the Earth's magnetic field, and conversely.

Method and apparatus for locating well casings from an adjacent wellbore

A wellbore tool for locating a target wellbore containing a conductive member from a second wellbore and directing the trajectory of the second wellbore relative to the target wellbore includes an electric current driver having an insulated gap; a three-axis magnetometer positioned within a non-magnetic housing that is disposed within a non-magnetic tubular, the three-axis magnetometer positioned below the electric current driver; a drill bit positioned below the three-axis magnetometer; a hollow tubular connected between the electric current driver and the three-axis magnetometer; and a measurement-while-drilling tool. The current driver generates an electric current across the gap to the portion of the tool below the insulated gap. In a method a current is generated across the insulated gap to the portion of the tool below the insulated gap to the conductive material in the target wellbore returning to a portion of the bottom hole assembly above the insulated gap thereby producing a target magnetic field. Measuring the target magnetic field at the bottom hole assembly and the earth's magnetic field; and determining the position of the second wellbore relative to the target wellbore. Then steering the bottom hole assembly to drill the second wellbore along a trajectory relative to the target wellbore.
Owner:SCHLUMBERGER TECH CORP

Apparatus and method utilizing magnetic field

Apparatus and method for harvesting energy from the environment and / or other external sources and converting it to useful electrical energy. The harvester does not contain a permanent magnet or other local field source but instead relies on the earth's magnetic field of another source of a magnetic field that is external to the sensing device. One advantage of these new harvesters is that they can be made smaller and lighter than energy harvesters that contain a magnet and / or an inertial mass. A small implantable stimulator(s) includes at least one passive magnetostrictive / electro-active (PME) magnetic-field sensor for delivering electrical stimulation to surrounding tissue. The PME is charged utilizing a changing magnetic field from an external alternating magnetic field source at a frequency particular to the PME. The small stimulator provides means of stimulating a nerve, tissue or internal organ with direct electrical current, such as relatively low-level direct current for temporary or as needed therapy. The field source may be a hand-held device or a small antenna affixed to the wearer's skin, clothing or accessories. The stimulator may be configured to be small enough to be implanted through a surgical needle. Open- and closed-loop systems are disclosed with measurement of current flow and therapy through PME sensor function.
Owner:FERRO SOLUTIONS

Method and apparatus for locating well casings from an adjacent wellbore

A wellbore tool for locating a target wellbore containing a conductive member from a second wellbore and directing the trajectory of the second wellbore relative to the target wellbore includes an electric current driver having an insulated gap; a three-axis magnetometer positioned within a non-magnetic housing that is disposed within a non-magnetic tubular, the three-axis magnetometer positioned below the electric current driver; a drill bit positioned below the three-axis magnetometer; a hollow tubular connected between the electric current driver and the three-axis magnetometer; and a measurement-while-drilling tool. The current driver generates an electric current across the gap to the portion of the tool below the insulated gap. In a method a current is generated across the insulated gap to the portion of the tool below the insulated gap to the conductive material in the target wellbore returning to a portion of the bottom hole assembly above the insulated gap thereby producing a target magnetic field. Measuring the target magnetic field at the bottom hole assembly and the earth's magnetic field; and determining the position of the second wellbore relative to the target wellbore. Then steering the bottom hole assembly to drill the second wellbore along a trajectory relative to the target wellbore.
Owner:SCHLUMBERGER TECH CORP

Method and apparatus for data fusion of a three-axis magnetometer and three axis accelerometer

Method and apparatus of integrating a three-axis magnetometer and a three-axis accelerometer to provide attitude and heading, calibrated magnetometer and accelerometer data, and angular rate, while removing sensor error sources over time and temperature and to compensate for hard and soft iron distortions of the Earth magnetic field. Filtered accelerometer data are corrected to account for various error sources. The magnetic heading is calculated from a horizontal magnetic field vector transformed from three dimensional Earth's magnetic field vector by using quasi-static roll and pitch angles from the filtered accelerometer data. A first Kalman filter estimates the state vector, based on the principle that the magnitude of local Earth's magnetic field vector is constant, to form hard and soft iron correction matrices. A second Kalman filter estimates a correction matrix of coupled remaining soft iron and the misalignment of the magnetometer and the accelerometer, as the dot product of local Earth's magnetic field vector and a corrected gravitational acceleration vector, at a quasi-static position, is constant. The three dimensional Earth's magnetic field vector is received by removing the hard and soft irons through the soft iron and hard iron correction matrixes.
Owner:MEMSIC

A vehicle/traffic flow detection method based on a three-axis magnetoresistive sensor

The invention relates to a vehicle / vehicle flow detection method based on a three-axis magnetoresistive sensor, comprising the following steps: calibrating or calibrating the three-axis magnetoresistance sensor; obtaining the environmental magnetic field strength when there is no car, and obtaining the magnetic field strength when there is a car passing by; using Kaiser The FIR filter is designed to filter the measured magnetic field strength data to obtain the data sequence; the data sequence is binarized; whether there is a car is judged; when there is no car, interference is judged; when there is a car, interference is judged; the vehicle leaves the judgment; after the vehicle is judged The software forcibly resets the three-axis magnetoresistive sensor. It is characterized in that the method integrates the three-axis magnetic field information, which can fully reflect the disturbance information of the geomagnetic field when the vehicle passes by, the sensor can be placed arbitrarily, and the software reset method can effectively overcome the signal drift of the magnetic resistance sensor generated when the vehicle passes continuously Problems, through the judgment of vehicle entry, interference, and vehicle departure, it can ensure high detection accuracy and strong anti-interference ability. This method is easy to implement and is suitable for vehicle / traffic flow detection on traffic roads, bridges, squares, tunnels, etc. It can also be used in Vehicle detection in the parking lot for intelligent management.
Owner:BEIHANG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products