Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

62 results about "Pharmacologic Agent" patented technology

USPRwire, Sun Nov 08 2015] Drug eluting stent, also known as medicated coronary stent, is a tiny, expandable metal mesh tube that is covered with a pharmacologic agent.

Method and system for the prediction of cardiac arrhythmias, myocardial ischemia, and other diseased condition of the heart associated with elevated sympathetic neural discharges

Methods and systems are provided for determining an increased likelihood of the occurrence of a cardiac arrhythmia, myocardial ischemia, congestive heart failure and other diseased conditions of the heart associated with elevated sympathetic neural discharges in a patient. The methods and systems comprise monitoring the sympathetic neural discharges of a patient from the stellate ganglia, the thoracic ganglia, or both, and detecting increases in the sympathetic neural discharges. The methods and systems may further comprise delivering therapy to the patient in response to a detected increase in the sympathetic neural discharge, such as delivering one or more pharmacological agents; stimulating myocardial hyperinnervation in the sinus node and right ventricle of the heart of the patient; and applying cardiac pacing, cardioversion or defibrillation shocks. Pharmacologic agents which may be used in connection with the delivery of include those which are known to exert anti-arrhythmic effect and anti-convulsant agents, such as phenytoin, carbamazepine, valproate, and phenobarbitone. Other pharmacologic agents may be used to treat impending myocardial ischemia and other diseased conditions of the heart associated with elevated sympathetic neural discharges.
Owner:CEDARS SINAI MEDICAL CENT

Method and system for the prediction of cardiac arrhythmias, myocardial ischemia, and other diseased condition of the heart associated with elevated sympathetic neural discharges

Methods and systems are provided for determining an increased likelihood of the occurrence of a cardiac arrhythmia, myocardial ischemia, congestive heart failure and other diseased conditions of the heart associated with elevated sympathetic neural discharges in a patient. The methods and systems comprise monitoring the sympathetic neural discharges of a patient from the stellate ganglia, the thoracic ganglia, or both, and detecting increases in the sympathetic neural discharges. The methods and systems may further comprise delivering therapy to the patient in response to a detected increase in the sympathetic neural discharge, such as delivering one or more pharmacological agents; stimulating myocardial hyperinnervation in the sinus node and right ventricle of the heart of the patient; and applying cardiac pacing, cardioversion or defibrillation shocks. Pharmacologic agents which may be used in connection with the delivery of include those which are known to exert anti-arrhythmic effect and anti-convulsant agents, such as phenytoin, carbamazepine, valproate, and phenobarbitone. Other pharmacologic agents may be used to treat impending myocardial ischemia and other diseased conditions of the heart associated with elevated sympathetic neural discharges.
Owner:CEDARS SINAI MEDICAL CENT

Method of treatment using magnetic resonance and apparatus therefor

Treatment of malignant tumors or other lesions by localized transfer of radio frequency electromagnetic energy into a portion of the body may be achieved by means of spatially localized magnetic resonance (MR). A magnetic field with appropriate spatial distribution and radio frequency tuned to the resonant frequency unique to the tumor treatment volume will cause selective therapeutic energy deposition or heating within the tumor (hyperthermia). The desired magnetic field distribution for the MR treatment volume may be achieved by means of a main static magnetic field with a superimposed magnetic field to define the treatment volume size and shape, positioned by a gradient magnetic field. Treatment may be enhanced by MR contrast agents (such as gadolinium) and pharmacologic agents. The therapy may be achieved by simultaneous resonance throughout an entire selected therapy volume, or successively point by point, or by superimposition of small volumes, including by successively excited points, lines or planes as practiced in prior art magnetic resonance imaging systems, facilitating simultaneous imaging and therapy. In a preferred embodiment, the invention is incorporated in a magnetic resonance imaging (MRI) scanner wherein the imager modified by the addition of a localizing magnet is used visually or by automated or semi-automated computer image processing to define and localize the treatment volume and the main magnetic field and positioning gradient fields are created by the same magnets used for imaging and the radio frequency apparatus used for Magnetic Resonance Therapy uses the same electronics and probe coil used for MRI.
Owner:WINTER JAMES

Method and system for the prediction of cardiac arrhythmias, myocardial ischemia, and other diseased condition of the heart associated with elevated sympathetic neural discharges

Methods and systems are provided for determining an increased likelihood of the occurrence of a cardiac arrhythmia, myocardial ischemia, congestive heart failure and other diseased conditions of the heart associated with elevated sympathetic neural discharges in a patient. The methods and systems comprise monitoring the sympathetic neural discharges of a patient from the stellate ganglia, the thoracic ganglia, or both, and detecting increases in the sympathetic neural discharges. The methods and systems may further comprise delivering therapy to the patient in response to a detected increase in the sympathetic neural discharge, such as delivering one or more pharmacological agents; stimulating myocardial hyperinnervation in the sinus node and right ventricle of the heart of the patient; and applying cardiac pacing, cardioversion or defibrillation shocks. Pharmacologic agents which may be used in connection with the delivery of include those which are known to exert anti-arrhythmic effect and anti-convulsant agents, such as phenytoin, carbamazepine, valproate, and phenobarbitone. Other pharmacologic agents may be used to treat impending myocardial ischemia and other diseased conditions of the heart associated with elevated sympathetic neural discharges.
Owner:CEDARS SINAI MEDICAL CENT
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products