Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

42 results about "Semiconductor Diode Lasers" patented technology

Electronically phase-locked laser systems

ActiveUS20090296751A1High output power levelDegrades beam qualityLaser detailsSemiconductor lasersFiberPower efficient
Semiconductor diode lasers are phase-locked by direct current injection and combined to form a single coherent output beam. The optical power is amplified by use of fiber amplifiers. Electronically control of the optical phases of each emitter enables power efficient combining of output beams to be maintained under dynamic conditions.
Owner:INTEL CORP

FCSEL that frequency doubles its output emissions using sum-frequency generation

A “Folded Cavity Surface Emitting Laser” (FCSEL) sum frequency generating device capable of generating a second harmonic at room temperatures with high efficiency and output power, while having a small size, low energy consumption, and a low manufacturing cost. A FCSEL sum frequency generating semiconductor diode laser has a multilayered structure that comprises a mode discriminating polyhedral shaped prism waveguide, which is located at one end of two light emitting diodes, a partial photon reflecting mirror, which is located at the opposite end of the two light emitting diodes, and a phase-matching sum-frequency generating superlattice, which is located between the polyhedral shaped prism waveguide and the partial photon reflecting mirror.
Owner:HENRICHS JOSEPH REID

Electronically phase-locked laser systems

Semiconductor diode lasers are phase-locked by direct current injection and combined to form a single coherent output beam. The optical power is amplified by use of fiber amplifiers. Electronically control of the optical phases of each emitter enables power efficient combining of output beams to be maintained under dynamic conditions.
Owner:INTEL CORP

High power semiconductor laser with a large optical superlattice waveguide

The invention relates to high power semiconductor diode lasers of the type commonly used in opto-electronics, mostly as so-called pump lasers for fiber amplifiers in the field of optical communication, e.g. for an erbium-doped fiber amplifier (EDFA) or a Raman amplifier. Such a laser, having a single cavity and working in single transverse mode, is improved by placing a multilayer large optical superlattice structure (LOSL) into at least one of the provided cladding layers. This LOSL provides for a significantly improved shape of the exit beam allowing an efficient high power coupling into the fiber of an opto-electronic network.
Owner:LUMENTUM TECH UK LTD +1

Blue laser pumped green light source for displays

The invention relates to light sources and displays incorporating blue laser pumped light sources that provide green light. According to a first aspect of the invention, a green light source includes a semiconductor diode laser emitting light in an optical path having a dominant wavelength within the blue spectral region, a substrate positioned in the optical path of the semiconductor diode laser, and a material coupled to the substrate. The material is selected to absorb light emitted by the semiconductor diode laser and, in response, to emit light having a dominant wavelength within the green spectral region. According to a second aspect of the invention, an apparatus includes a lighting module for a display, the lighting module includes an array of red laser light sources, an array of blue laser light sources, and an array of green light sources according to the first aspect of the invention.
Owner:CORP FOR LASER OPTIC RES

Optoelectronic systems providing high-power high-brightness laser light based on field coupled arrays, bars and stacks of semicondutor diode lasers

A semiconductor diode laser having a broad vertical waveguide and a broad lateral waveguide is disclosed emitting laser-light in a single vertical mode and a single lateral mode narrow beam. The vertical waveguide comprises a coupled cavity structure, wherein light, generated in the active medium placed in the first cavity leaks into the second cavity and returns back. Phase matching conditions govern the selection of a single vertical mode. A multi-stripe lateral waveguide comprises preferably a lateral photonic band crystal with a lateral optical defect created by selected pumping of multistripes. This approach allows the selection of a single lateral mode having a higher optical confinement factor and / or a lower absorption loss and / or a lower leakage loss compared to the rest lateral optical modes. This enables a single lateral mode lasing from a broad area field coupled laser array. A laser system comprised of multiple field coupled laser arrays on a single wafer and a set of external mirrors enables an ultra-broad field coupled laser bar emitting a coherent laser light in a single vertical optical mode and a single lateral optical mode. A laser system comprised of multiple ultra-broad field coupled laser bars on different wafers and a set of external mirrors enables an ultra-broad field coupled laser stack emitting coherent laser light in a single vertical optical mode and a single lateral optical mode. This allows realization of ultrahigh power ultrahigh brightness laser systems based on semiconductor diode lasers.
Owner:VI SYST GMBH

Laser signal real-time continuous extracting method for atmospheric suspended particle

Red semiconductor diode laser in 650- 675nm wavelength as scattered light source for aerosol particles passing through collimating lens, adjustment of activizer, cylindrical lens A and B forms horizontal, prolated facula on focal plane. Two beam: o light and e light with equal energy are obtained after light passes through yttrium vanadate crystal positioned behind cylindrical lens B. aerosol particles in atmosphere passes through two faculas formed by o light and e light one by one, generating scattered light, which collected by a half ellipsoid mirror forms two strong scattering peaks. Avalanche photodiode transfers received signal to electric system. The invention detects particle distribution in diameter of 0.5-10micros in aerodynamics and content of particles possessing biology characteristic.
Owner:ANHUI INST OF OPTICS & FINE MECHANICS - CHINESE ACAD OF SCI

Method and system for homogenizing diode laser pump arrays

An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.
Owner:LAWRENCE LIVERMORE NAT SECURITY LLC

Optical dermatological and medical treatment apparatus having replaceable laser diodes

Semiconductor diode lasers are tiny sources of light powered by electricity. These are used extensively in medical and aesthetic applications. This patent application covers the concept of replaceable laser diodes for a wide range of applications. Historically, the high power laser sources have been prohibitively expensive to contemplate such an idea. However, as technology advances the price per Watt continues to fall dramatically. Somewhat analogous to the Gillette safety razor concept, this patent application describes how diodes can be replaced in a manner akin to the ordinary razor blade. Simply put, this invention describes replaceable laser light sources for aesthetic and medical applications.
Owner:FROST RICKY A

Method of using multi-probe laser device

A method of using a hand-held laser device that can simultaneously provide two or more types of low level laser therapy treatments to two or more areas of a patient's body simultaneously. The device enables laser light of different pulse repetition rates, different beam shapes and spot sizes to be applied to a patient's body. The device includes two or more laser sources. In the preferred embodiment, two semiconductor diode laser sources simultaneously provide two separate laser beams from separate probes, one laser beam producing laser light at a first pulse repetition rate and the other producing laser light at a second pulse repetition rate.
Owner:ERCHONIA CORP

Semiconductor diode laser spectrometer arrangement and method

A method apparatus for sensing gases using a semiconductor diode laser spectrometer, the method comprising: introducing a sample gas into a non-resonant optical cell ( 17 ); applying a step function electrical pulse ( 19 ) to a semiconductor diode laser ( 20 ) to cause the laser ( 20 ) to output a continuous wavelength chirp for injecting ( 16 a) into the optical cell ( 17 ); injecting ( 16 a) the wavelength chirp into the optical cell ( 17 ); using the wavelength variation provided by the wavelength chirp as a wavelength scan, and detecting ( 23 ) light emitted from the cell ( 17 ), wherein a chirp rate is selected to substantially prevent light interference occurring in the optical cell ( 17 ).
Owner:艾默生过程管理有限公司

Method and system for homogenizing diode laser pump arrays

An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.
Owner:LAWRENCE LIVERMORE NAT SECURITY LLC

Polarization-insensitive laser stabilization using multiple waveguide gratings

The effectiveness of reflected light to stabilize the operational characteristics of a semiconductor diode laser varies with the polarization orientation of the reflected light. Stabilization failure can occur if the polarization orientation of the reflected light is orthogonal to the polarization of the light emitted by the laser source. The use of multiple reflectors can reduce the probability of stabilization failure by arranging the reflectors to return to the laser source portions of light having polarization orientations that are statistically independent with respect to each other.
Owner:JDS UNIPHASE CORP

Semiconductor light emitting devices including embedded curent injection layers

Electrically conductive, embedded current injection layers are provided in combination with cladding layers to provided improved current conduction to the active light-emitting regions of semiconductor light-emitting devices. The embedded electrical contact layers are used to inject current directly into the active region of semiconductor light-emitting devices. Free-carrier loss within the cladding layers is reduced, and power efficiency is improved by eliminating voltage drops associated with current transport through the cladding layers. Moreover, use of the embedded current injection layers eliminates the need to transport current through the cladding layers thereby allowing the use of a wider range of materials for the cladding layers. The present current injection layers may be embedded in various semiconductor light-emitting devices, i.e., both edge- and surface-emitting devices, such as semiconductor diode lasers, interband cascade lasers, light-emitting diodes and vertical cavity surface-emitting lasers.
Owner:MAXION TECH

Blue laser pumped green light source for displays

The invention relates to light sources and displays incorporating blue laser pumped light sources that provide green light. According to a first aspect of the invention, a green light source includes a semiconductor diode laser emitting light in an optical path having a dominant wavelength within the blue spectral region, a substrate positioned in the optical path of the semiconductor diode laser, and a material coupled to the substrate. The material is selected to absorb light emitted by the semiconductor diode laser and, in response, to emit light having a dominant wavelength within the green spectral region. According to a second aspect of the invention, an apparatus includes a lighting module for a display, the lighting module includes an array of red laser light sources, an array of blue laser light sources, and an array of green light sources according to the first aspect of the invention.
Owner:CORP FOR LASER OPTIC RES

Frequency-chirped semiconductor diode laser phase-locked optical system

A chirped diode laser (ChDL) is employed for seeding optical amplifiers and / or dissimilar optical paths, which simultaneously suppresses stimulated Brillouin scattering (SBS) and enables coherent combination. The seed spectrum will appear broadband to suppress the SBS, but the well-defined chirp will have the coherence and duration to allow the active phasing of multiple amplifiers and / or dissimilar optical paths. The phasing is accomplished without optical path-length matching by interfering each amplifier output with a reference, processing the resulting signal with a phase lock loop, and using the error signal to drive an acousto-optic frequency shifter at the front end of each optical amplifier and / or optical path.
Owner:FUTUREWEI TECH INC +1

Multiwavelength laser system and method for ophtalmological applications

A multiwavelength laser system for opthalmological applications. The system including a first semiconductor diode laser including a first working beam of a first wavelength; and at least one second semiconductor diode laser having a second working beam of a second wavelength. The second wavelength being different from the first wavelength.
Owner:CARL ZEISS MEDITEC AG

Multiwavelength laser system and method for ophtalmological applications

A multiwavelength laser system for opthalmological applications. The system including a first semiconductor diode laser including a first working beam of a first wavelength; and at least one second semiconductor diode laser having a second working beam of a second wavelength. The second wavelength being different from the first wavelength.
Owner:CARL ZEISS MEDITEC AG

Optical dermatological and medical treatment apparatus having replaceable laser diodes

Semiconductor diode lasers are tiny sources of light powered by electricity. These are used extensively in medical and aesthetic applications. This patent application covers the concept of replaceable laser diodes for a wide range of applications. Historically, the high power laser sources have been prohibitively expensive to contemplate such an idea. However, as technology advances the price per Watt continues to fall dramatically. Somewhat analogous to the Gillette safety razor concept, this patent application describes how diodes can be replaced in a manner akin to the ordinary razor blade. Simply put, this invention describes replaceable laser light sources for aesthetic and medical applications.
Owner:FROST RICKY A

Refractive-diffractive hybrid lens, in particular for beam shaping of high power diode lasers

A cylindrical lens having a refractive optical element and a diffractive optical element is provided. The cylindrical lens can be fabricated cost effectively and precisely, and optical aberrations and defects in semiconductor diode laser arrangements can be corrected. The diffractive optical element can include various segments.
Owner:SCHOTT AG

Method for improvement of beam quality and wavelength stabilized operation of a semiconductor diode laser with an extended waveguide

A method is disclosed for improving the functionality of a semiconductor diode laser with an extended vertical waveguide, wherein the active medium is located close to the top cladding layer of the waveguide, and the laser aims to emit light in a narrow beam with high brightness and / or to operate in the wavelength-stabilized regime. The goal is to suppress parasitic optical modes localized close to the top cladding layer of the waveguide. Unpumped sections and groves perpendicular to the stripe serve to suppress these parasitic modes. Deep (preferably a few tens of micrometers) groves parallel to the stripe suppress parasitic emission of light and the feedback in the closed lateral modes. In a tilted wave laser the longitudinal resonator can be preferably configured to have a selected length to ensure closed loops formed in the longitudinal direction by the tilted wave.
Owner:VI SYST GMBH

Silicon heat sink and preparation method thereof for high-power semiconductor diode laser packaging

The invention provides a silicon heat sink and preparation method thereof for high-power semiconductor diode laser packaging. The silicon heat sink used for high-power semiconductor diode laser packaging comprises a silicon slice, a first silica layer, a second silica layer, a first metallization layer, and a second metallization layer. The first silica layer is made on the front side of the silicon slice. The second silica layer is made on the back side of the silicon slice. The first metallization layer is made on the first silica layer, and the first metallization layer is divided into two sections with a gap in the middle. The second metallization layer is made on the second silica layer. According to the preparation method, thermal conductivity is small, and the silicon thermal conductivity is 148W / m / DEG C, thereby the cost is lower. Meanwhile, due to the fact that silicon surface is easy to achieve a high degree of finish to form a good contact with semiconductor devices more easily, heat dispelling is better.
Owner:INST OF SEMICONDUCTORS - CHINESE ACAD OF SCI

Laser diode with a spatially varying electrostatic field frequency converter

A semiconductor diode laser that generates light at wavelengths longer than conventional diode lasers. The laser includes a first gain element that generates a first “pump” laser beam having a first frequency and a second gain element that generates a second “pump” laser beam having a second frequency. A nonlinear frequency conversion section mixes the two beams to generate a third co-propagating optical beam at the difference frequency. To improve efficiency, the frequency conversion section is furnished with an array of charged electrodes that spatially modulate the nonlinear susceptibility and phase-match the three beams.
Owner:LASER OPERATIONS

Optoelectronic systems providing high-power high-brightness laser light based on field coupled arrays, bars and stacks of semicondutor diode lasers

A semiconductor diode laser having a broad vertical waveguide and a broad lateral waveguide is disclosed emitting laser-light in a single vertical mode and a single lateral mode narrow beam. The vertical waveguide comprises a coupled cavity structure, wherein light, generated in the active medium placed in the first cavity leaks into the second cavity and returns back. Phase matching conditions govern the selection of a single vertical mode. A multi-stripe lateral waveguide comprises preferably a lateral photonic band crystal with a lateral optical defect created by selected pumping of multistripes. This approach allows the selection of a single lateral mode having a higher optical confinement factor and / or a lower absorption loss and / or a lower leakage loss compared to the rest lateral optical modes. This enables a single lateral mode lasing from a broad area field coupled laser array. A laser system comprised of multiple field coupled laser arrays on a single wafer and a set of external mirrors enables an ultra-broad field coupled laser bar emitting a coherent laser light in a single vertical optical mode and a single lateral optical mode. A laser system comprised of multiple ultra-broad field coupled laser bars on different wafers and a set of external mirrors enables an ultra-broad field coupled laser stack emitting coherent laser light in a single vertical optical mode and a single lateral optical mode. This allows realization of ultrahigh power ultrahigh brightness laser systems based on semiconductor diode lasers.
Owner:VI SYST GMBH

Multi-probe laser device

A hand-held laser device that can simultaneously provide multiple types of low level laser therapy treatments to multiple areas of a patient's body simultaneously. The device enables laser light of different pulse repetition rate, different beam shapes and spot sizes to be applied to a patient's body. The device includes multiple laser sources. In the preferred embodiment, two semiconductor diode laser sources simultaneously provide two separate laser beams from separate probes, one laser beam producing laser light at a first pulse repetition rate and the other producing laser light at a second pulse repetition rate.
Owner:ERCHONIA CORP

High power semiconductor laser with a large optical superlattice waveguide

The invention relates to high power semiconductor diode lasers of the type commonly used in opto-electronics, mostly as so-called pump lasers for fiber amplifiers in the field of optical communication, e.g. for an erbium-doped fiber amplifier (EDFA) or a Raman amplifier. Such a laser, having a single cavity and working in single transverse mode, is improved by placing a multilayer large optical superlattice structure (LOSL) into at least one of the provided cladding layers. This LOSL provides for a significantly improved shape of the exit beam allowing an efficient high power coupling into the fiber of an opto-electronic network.
Owner:LUMENTUM TECH UK LTD +1

Flared laser oscillator waveguide

A broad area semiconductor diode laser device includes a multimode high reflector facet, a partial reflector facet spaced from said multimode high reflector facet, and a flared current injection region extending and widening between the multimode high reflector facet and the partial reflector facet, wherein the ratio of a partial reflector facet width to a high reflector facet width is n:l, where n>l. The broad area semiconductor laser device is a flared laser oscillator waveguide delivering improved beam brightness and beam parameter product over conventional straight waveguide configurations.
Owner:NLIGHT INC

Method and system for homogenizing diode laser pump arrays

An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.
Owner:LAWRENCE LIVERMORE NAT SECURITY LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products