Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

47 results about "Tissue targeting" patented technology

Target Tissue. Target tissue/organ is defined as the site on which a poison exerts its action or an organ that accounts for the primary toxicity of a poison.

Tissue targeted antigenic activation of the immune response to cancers

The invention provides in part methods of treating cancers of a specific organ or tissue by administering a composition that is antigenically specific for one or more microbes that are pathogenic in the specific organ or tissue in which the cancer is situated. The formulations of the invention thereby facilitate activation of a treatment response to a cancer in a particular tissue or organ. The compositions may for example include killed or attenuated microbial pathogens, and may be administered at sites distant from the cancer, for example the skin. In some embodiments, microbial species of endogenous flora that are known to cause infection in the relevant organ or tissue may be used in the formulation of the antigenic compositions. In alternative embodiments, exogenous microbial pathogens that are known to cause infection in the relevant organ or tissue may be used in the formulation of the antigenic compositions. The administration of the immunogenic compositions may be repeated relatively frequently over a relatively long period of time. In embodiments for intradermal or subcutaneous injection, dosages may be adjusted so that injections reproduce a consistent visible delayed inflammatory immune reaction at the successive site or sites of administration.
Owner:QU BIOLOGICS INC

Tissue targeted antigenic activation of the immune response to cancers

The invention provides in part methods of treating cancers of a specific organ or tissue by administering a composition that is antigenically specific for one or more microbes that are pathogenic in the specific organ or tissue in which the cancer is situated. The formulations of the invention thereby facilitate activation of a treatment response to a cancer in a particular tissue or organ. The compositions may for example include killed or attenuated microbial pathogens, and may be administered at sites distant from the cancer, for example the skin. In some embodiments, microbial species of endogenous flora that are known to cause infection in the relevant organ or tissue may be used in the formulation of the antigenic compositions. In alternative embodiments, exogenous microbial pathogens that are known to cause infection in the relevant organ or tissue may be used in the formulation of the antigenic compositions. The administration of the immunogenic compositions may be repeated relatively frequently over a relatively long period of time. In embodiments for intradermal or subcutaneous injection, dosages may be adjusted so that injections reproduce a consistent visible delayed inflammatory immune reaction at the successive site or sites of administration.
Owner:QU BIOLOGICS INC

HGG (Human Gammaglobulin) polypeptide in combination with tissue specificity of cerebral arterial thrombosis and application thereof

The invention discloses HGG (Human Gammaglobulin) polypeptide in combination with the tissue specificity of cerebral arterial thrombosis. The invention relates to a method for obtaining the polypeptide. The method comprises the following steps: carrying out in-vivo selection of a mouse MCAO (Middle Cerebral Artery Occlusion) cerebral arterial thrombosis model by adopting an in-vivo phage display peptide library screening technology so as to obtain phage clones in combination with cerebral arterial thrombosis tissue; and randomly selecting the plurality of phage clones to sequence, and authenticating the in-vivo combination specificity of HGG peptide and coded phage clones HGG-M13 thereof. The invention further relates to application of the polypeptide in preparation of a high-sensitivity imaging molecular probe and a targeting delivery neuroprotective drug for cerebral stroke. The polypeptide can be synthesized through an artificial method; the polypeptide is low in molecular weight, high in activity and penetrating power, good in specificity and low in toxicity, and has good tissue targeting of cerebral arterial thrombosis in vivo; and therefore, the polypeptide is applicable to serving as a carrier of the high-sensitivity imaging molecular probe and the targeting delivery neuroprotective drug.
Owner:SOUTHEAST UNIV

Tissue targeted antigenic activation of the immune response to treat cancers

The invention provides in part methods of treating cancers of a specific organ or tissue by administering a composition that is antigenically specific for one or more microbes that are pathogenic in the specific organ or tissue in which the cancer is situated. The formulations of the invention thereby facilitate activation of an immune response to a cancer in a particular tissue or organ. The compositions may for example include killed or attenuated microbial pathogens, such as whole killed bacterial cells, and may be administered at sites distant from the cancer, for example the skin. In some embodiments, microbial species of endogenous flora that are known to cause infection in the relevant organ or tissue may be used in the formulation of the antigenic compositions. In alternative embodiments, exogenous microbial pathogens that are known to cause infection in the relevant organ or tissue may be used in the formulation of the antigenic compositions. The administration of the immunogenic compositions may be repeated relatively frequently over a relatively long period of time. In embodiments for intradermal or subcutaneous injection, dosages may be adjusted so that injections reproduce a consistent, visible, delayed inflammatory immune reaction at the successive site or sites of administration.
Owner:QU BIOLOGICS INC

Mutant Paramyxovirus and Method for Production Thereof

The present invention provides a modified paramyxovirus containing a reduced amount of receptor-binding protein compared with the wild type; a method of preparing a modified paramyxovirus, comprising the following steps: (1) a step for introducing a nucleic acid that suppresses the expression of a receptor-binding protein of a paramyxovirus into an animal cell, (2) a step for infecting the paramyxovirus to the cell, and (3) a step for isolating paramyxovirus particles replicated in the cell; and a modified paramyxovirus prepared by the method of preparation mentioned above.
The present invention also provides a chimera protein wherein a fusion protein of a virus has been joined or bound to a peptide that binds specifically to a cell surface marker; a nucleic acid that encodes the chimera protein; an animal cell capable of expressing the chimera protein on the cell surface thereof; a modified paramyxovirus expressing the chimera protein on the virus particle surface thereof; and a method of preparing a tissue targeting paramyxovirus, comprising: (1) a step for supplying a nucleic acid that encodes a chimera protein wherein a fusion protein of a virus has been joined or bound to a peptide that binds specifically to a cell surface marker of the target cells, (2) a step for introducing the nucleic acid supplied in (1) into an animal cell in an expressible state, and expressing the same, (3) a step for infecting a paramyxovirus to the cell, and (4) a step for isolating paramyxovirus particles replicated in the cell.
Owner:IMMUNOMEDICINE INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products