Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

195results about "Amplification control device circuits" patented technology

Variable gain amplifier and variable gain amplifier module

An analog variable gain amplifier (VGA) adjusting a signal level of a mobile communication system is provided. More particularly, design of a VGA using an operational transconductance amplifier (OTA) having a wide linear input/output range is disclosed. The VGA includes two double-differential-pair OTAs and feedback resistors. A first differential input of a first double differential pair OTA receives an input signal from the forward stage, and a second differential input is negatively fed back through a differential output and a passive resistor. An input in which a first block of the connection structure and first and second differential inputs of a second double differential pair OTA are connected receives an output signal of the first block stage. The output is negatively fed back in series through a variable resistor whose resistance varies exponentially with an adjustment voltage from outside. According to the VGA, it is possible to provide a characteristic of linear variation of gain on a logarithmic scale with respect to a control voltage with a simple and inexpensive constitution. In addition, the VGA can be designed for a low pass filter having a conventional OTA used for a core circuit, and has a simple circuit structure. Therefore, the VGA is convenient for high integration and low-power design, and thus is appropriate for a terminal chip and so forth.
Owner:ELECTRONICS & TELECOMM RES INST

System and method for ESD protection

An integrated receiver with channel selection and image rejection substantially implemented on a single CMOS integrated circuit is described. A receiver front end provides programmable attenuation and a programmable gain low noise amplifier. Frequency conversion circuitry advantageously uses LC filters integrated onto the substrate in conjunction with image reject mixers to provide sufficient image frequency rejection. Filter tuning and inductor Q compensation over temperature are performed on chip. The filters utilize multi track spiral inductors. The filters are tuned using local oscillators to tune a substitute filter, and frequency scaling during filter component values to those of the filter being tuned. In conjunction with filtering, frequency planning provides additional image rejection. The advantageous choice of local oscillator signal generation methods on chip is by PLL out of band local oscillation and by direct synthesis for in band local oscillator. The VCOs in the PLLs are centered using a control circuit to center the tuning capacitance range. A differential crystal oscillator is advantageously used as a frequency reference. Differential signal transmission is advantageously used throughout the receiver. ESD protection is provided by a pad ring and ESD clamping structure that maintains signal integrity. Also provided are shunts at each pin to discharge ESD build up. The shunts utilize a gate boosting structure to provide sufficient small signal RF performance, and minimal parasitic loading.
Owner:AVAGO TECH INT SALES PTE LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products