Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

141 results about "Digital pathology" patented technology

Digital pathology is an image-based information environment which is enabled by computer technology that allows for the management of information generated from a digital slide. Digital pathology is enabled in part by virtual microscopy, which is the practice of converting glass slides into digital slides that can be viewed, managed, shared and analyzed on a computer monitor. With the advent of Whole-Slide Imaging, the field of digital pathology has exploded and is currently regarded as one of the most promising avenues of diagnostic medicine in order to achieve even better, faster and cheaper diagnosis, prognosis and prediction of cancer and other important diseases.

Cancer pathology auxiliary diagnosis method based on artificial intelligence technology

The present invention discloses a cancer pathology auxiliary diagnosis method based on an artificial intelligence technology. The method comprises the following steps of: canning a plurality of digital pathology images of a system into a computer, performing marking of diseased areas by pathologists to form a digital pathology image database; performing preprocessing of the digital pathology images to form a data set for algorithm training, performing sample collection, and forming a data subset for training; allowing a full convolutional network to use the data subset for training to performiteration training to regulate parameters, and constructing an artificial intelligence analysis module; scanning diagnosis pathology images, and decoding the diagnosis pathology images to access the artificial intelligence analysis module; and performing diagnosis and marking of the diagnosis pathology images by employing the artificial intelligence analysis module, and performing feedback of themarked pathology information to doctors. The cancer pathology auxiliary diagnosis method based on the artificial intelligence technology is high in diagnosis accuracy and can effectively assist doctors in discrimination of cancer pathology information.
Owner:云鲲医疗科技(上海)有限公司

Cell detection method based on sliding window and depth structure extraction features

The invention discloses a cell detection method based on a sliding window and depth structure extraction features. The cell detection method is used for automatically detecting cells by utilizing depth model extraction features and then applying a sliding window technology to a pathological section image. The cell detection method comprises the following steps: section image blocking, training of stacked and sparse self-coding of a feature extraction model, detector training, scanning of a large image by the sliding window and cell position labeling. According to the cell detection method, the large section image is used as a search object, the positions of cells in the image can be found more accurately, faster and completely by adopting a new method of combining a detector and the sliding window, and a good detection effect can be achieved for some unobvious cells in the image. The automatic cell detection method disclosed by the invention can be used for assisting a clinical doctor in carrying out quantitative evaluation on digital pathological sections and accurately and rapidly carrying out clinical diagnosis, so that the diagnosis difference of different observers or one observer at different time periods is reduced.
Owner:NANJING UNIV OF INFORMATION SCI & TECH

Space orientation computing method for numerical control bracket

The invention relates to a space orientation computing method for a numerical control bracket, which comprises the following steps of: 1, processing three-dimensional digital analogy of each part; 2, defining a fixed mechanism and a moving mechanism in each digital analogy; 3, setting a drive command for a multiple axis movements of a numerical control bracket; 4, simulating whether each axis movement accords with an actual condition; 5, correcting a movement zero point of the digital analogy of the numerical control bracket; 6, enabling a spindle axes of an automatic drilling and riveting machine to be coincident with a normal line of a riveting point and the riveting point to be coincident with the center of a pressure foot bush; 7, refreshing the digital analogy; 8, figuring out data of five axes of the numerical digital bracket and data of a lifting position and a rotating angle of a lower riveting head under the condition of automatic drilling and riveting on any point on the surface of an airplane; 9, carrying out collision checking and batch output on space orientation data; and 10, carrying out numerical control programming to ensure that the automatic drilling and riveting machine continuously operates. According to the space orientation computing method, the numerical control system can automatically operate according to the space orientation data, and the airplane on the numerical control bracket meets the working requirements of the automatic drilling and riveting machine on the space.
Owner:AVIC SAC COMML AIRCRAFT

Digital pathology whole slice image retrieval method

The present invention discloses a digital pathology whole slice image retrieval method, and the method is used in a digital pathology whole slice image database. The method comprises: extracting positions of dispersed SIFT feature points and SIFT feature vectors on a digital pathology whole slice image in the database; using an LDA model to obtain a high-level semantic feature value for each SIFT feature point; using an overlapping sliding window method to select alternative regions, and collecting statistics of semantic feature values of all the SIFT feature points in each alternative region, so as to obtain semantic representation vectors of the alternative region; and taking a query image as a region, using the same method to obtain the semantic representation vector of the query image, calculating cosine distances between the semantic representation vector of the query image and semantic representation vectors of all the alternative regions, sorting the distances, and returning to multiple regions with smallest distance. The method disclosed by the present invention can provide diagnosis reference information for the pathologist, and can be used for a digital pathology whole slice image database management and query system and computer-aided diagnosis.
Owner:BEIHANG UNIV

Digital pathology system

The present invention relates to digital pathology. In order to improve the workflow in the process of selecting a region of interest of an unstained sample to be removed for molecular diagnostic, a method (100) is provided for selecting a sample removing area of an unstained sample to be removed for molecular diagnostic. The method comprises the following steps: In a first step 102, also referred to as step a), a reference removing area is selected in a reference image of a reference slice of an object, wherein biological material in the reference slice is stained. In a second step 104, also referred to as step b), a digital sample image of a sample slice of the object is obtained under an imaging setting. The biological material in the sample slice is unstained. The sample slice is received on a sample slide and positioned in an optical path between a light source and an image detector. In the optical path between the light source and the image detector, it is further provided a contrast enhancing arrangement for improving contrast between the unstained biological material and background. Light is provided passing through the sample slice to be received by the image detector. In a third step 106, also referred to as step c), the digital sample image is registered with the reference image for translating the reference removing area in the reference image to the digital sample image. In a fourth step 108, also referred to as step d), a sample removing area is identified in the digital sample image based on the translated reference removing area.
Owner:KONINKLJIJKE PHILIPS NV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products