Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

165 results about "Fluid simulation" patented technology

Fluid animation refers to computer graphics techniques for generating realistic animations of fluids such as water and smoke. Fluid animations are typically focused on emulating the qualitative visual behavior of a fluid, with less emphasis placed on rigorously correct physical results, although they often still rely on approximate solutions to the Euler equations or Navier–Stokes equations that govern real fluid physics. Fluid animation can be performed with different levels of complexity, ranging from time-consuming, high-quality animations for films or visual effects, to simple and fast animations for real-time animations like computer games.

Parallel acceleration method and system of lattice Boltzmann method

The invention discloses a parallel acceleration method and a system of a lattice Boltzmann method (LBM), which overcome the defect that an X86 server cluster is higher in consumption of time and the like for LBM treatment at present. The method comprises the steps that a CPU (Central Processing Unit) end determines macro parameters and initial values of the macro parameters of all lattice points of a grid, defines a data structure and a storage mode for storing equilibrium distribution functions of all the lattice points in all directions and the macro parameters of all the lattice points, computes the equilibrium distribution functions of all the lattice points in all the directions according to the macro parameters, and sets thread execution configuration of an inner core of an MIC (Many Integrated Core) card; an MIC end conducts parallel computation of migration and impact and parallel boundary processing according to the macro parameters, the initial values of the macro parameters, the thread execution configuration and the equilibrium distribution functions of all the lattice points of the grid in all the directions, and obtains a convergence status according to the equilibrium distribution functions of all the lattice points of the grid in all the directions. With the adoption of the method and the system, the processing property of the lattice Boltzmann method is improved, and the demand of fluid simulation is satisfied.
Owner:INSPUR BEIJING ELECTRONICS INFORMATION IND

Blade number optimization method of hydraulic torque converter on the basis of neural network and complete machine

The invention discloses a blade number optimization method of a hydraulic torque converter on the basis of a neural network and a complete machine. A blade number neural network model is established and is combined with a digital model of a complete machine system to optimize a blade number. The blade number optimization method comprises the following steps: taking the blade numbers of the pump impeller, the turbine and the guide wheel of the hydraulic torque converter as input variables; utilizing an orthogonal experiment method to reasonably arrange an experiment; taking a pump impeller torque and a turbine torque of three-dimensional fluid simulation as target vectors of a training sample of the neural network so as to determine the structure and the training sample of the natural network; in order to improve the design efficiency and the convergence precision of the natural network, importing a genetic algorithm to optimize the initial weight and the threshold value of the natural network, accurately predicting the performance of the hydraulic torque converter of a non-training sample set by the trained natural network; and combining the blade number neural network model with a digital model of the complete machine system to optimize the blade number. The method has an important engineering application value on improving the operation efficiency of the complete machine.
Owner:TONGJI UNIV

Intelligent simulation algorithm matching method for three-dimensional dynamic fluid

The invention relates to an intelligent simulation algorithm matching method for three-dimensional dynamic fluid. The intelligent simulation algorithm matching method includes: building fluid simulation algorithm libraries comprising an algorithm equation library, a fluid material library, a three-dimensional flow field library and a target fluid describing language; intelligently matching fluid simulation algorithms: setting the target fluid describing language, finding the describing language corresponding to given conditions from the algorithm equation library by a system according to input condition information and utilizing an algorithm equation mapped by the describing language as a matched simulation algorithm equation of a target fluid; rebuilding a three-dimensional dynamic fluid model in real time, drawing three-dimensional fluid, proving simulation effect of the fluid and analyzing accuracy and effectiveness of the algorithms and parameters; controlling parameter and algorithm reconstitution; establishing an intelligent learning mechanism of the fluid simulation algorithms, storing the intelligent learning mechanism into the algorithm library together with the reconstitution algorithms and parameters passing effect proving, and setting up a matching relation between the intelligent learning mechanism and the keyed-in conditional information describing the fluid to be as a matching algorithm alternative item in future similar occasions, so that the system can complete the optimum screening configuration through intelligent learning.
Owner:苏州市数字城市工程研究中心有限公司

Third-dimensional fluid simulation method referring to heat conduction and dynamic viscosity

The invention discloses a third-dimensional fluid simulation method referring to heat conduction and dynamic viscosity. The method comprises the steps that 1, discrete modeling is carried out on the heat conduction process in fluid and the heat conduction process between the fluid and the outside based on a smoothed particle hydrodynamics (SPH) model, and the phase change process is simulated according to the influence of enthalpy of phase change on the phase change temperature; 2, calculation of the dynamic viscosity is introduced to show details in the fluid motion process; 3, a PCISPH algorithm is called to complete the remaining fluid motion simulating process; 4, a GPU accelerating algorithm is utilized for processing the processes of heat conduction, phase change, fluid viscosity changes and the like in parallel on a compute unified device architecture (CUDA), and fast simulation of third-dimensional phase change fluid is achieved. By means of the method, the heat conduction process between different kinds of fluid and the outside and the viscosity change process of the fluid can be simulated really and efficiently, simulation details in an existing method are enhanced, and the sense of reality of fluid simulation is improved.
Owner:EAST CHINA NORMAL UNIV

Low-altitude wind shear three-dimensional backscattering wave simulation method for airborne meteorological radar

InactiveCN104597430AReflect meteorological characteristicsWave based measurement systemsJet aeroplaneWeather radar
The invention discloses a low-altitude wind shear three-dimensional backscattering wave simulation method for an airborne meteorological radar. The low-altitude wind shear three-dimensional backscattering wave simulation method comprises the following steps: establishing a three-dimensional meshed computational domain by utilizing scene parameters including a scene range and boundary conditions; performing fluid simulation on the computational domain to generate original wind field data; correcting the original wind field data; establishing an simulation scene and reading the corrected wind field data according to settings of the scene parameters; according to the simulation scene, simulating low-altitude wind shear of the airborne meteorological radar, and performing coherence stack on scattering points within a radar beam to form a radar backscattering wave signal of a scanning direction; respectively updating airplane position information, corrected wind field data and radar beam angle scanning information by utilizing the airborne parameters, the scene parameters and the scanning parameters; judging whether the scanning is completed or not according to a scanning range of the radar parameters. The method can be used for truly reflecting meteorological characteristics of the wind shear three-dimensional backscattering wave signal, so that the simulation data is effective and reliable.
Owner:CIVIL AVIATION UNIV OF CHINA

Aircraft full-automatic pneumatic optimization method based on reinforcement learning and transfer learning

The invention discloses an aircraft full-automatic aerodynamic optimization method based on reinforcement learning and transfer learning. The method is used for solving the problem that an existing pneumatic optimization method is prone to falling into local optimization or low in convergence speed, manual intervention is excluded in the final high-precision optimization stage through the optimization method, and the optimization efficiency is further improved. According to the technical scheme, firstly, a reinforcement learning environment based on semi-empirical estimation and high-precisionfluid simulation is established; a reinforcement learning neural network is constructed; a reward function is set, the global optimization capability of reinforcement learning is utilized; in the network training process, optimization experience is extracted from a semi-experience estimation method and stored in network parameters; then, another reinforcement learning neural network is constructed, migration learning is used for migrating the extracted optimization experience to the network, then the network is applied to aerodynamic optimization based on high-precision fluid simulation, andfinally, high-precision design parameters with excellent aerodynamic performance are obtained by training the network. Compared with a background technology method, the method has the advantages thatthe convergence speed is increased, the strong global optimization capability is realized, and the engineering value for high-precision pneumatic optimization is very high.
Owner:TSINGHUA UNIV

Feature image based gas pipeline network leakage detection and positioning method

The invention discloses a feature image based gas pipeline network leakage detection and positioning method. The method comprises the following steps of: 1, selecting all nodes of a gas pipeline network as control points; 2, establishing a gas pipeline network simulation model by employing offline fluid simulation software Pipeline Studio; 3, respectively disposing m equidistant simulation leakage points on pipe sections between adjacent control points of the gas pipeline network simulation model, wherein m is greater than or equal to 2; 4, selecting n equidistant simulation leakage amounts according to gas consumption of the gas pipeline network; 5, respectively inputting the n simulation leakage amounts to the m simulation leakage points, respectively carrying out steady-state simulation on each working condition to obtain control point pressure data of each working condition; 6, making a feature image of leakage working conditions of the gas pipeline network; 7, extracting image feature vectors as detection samples of an SVM (Support Vector Machine); and 8, classifying and identifying the detection samples many times by the SVM. According to the method, a leakage source position can be detected and positioned rapidly and accurately and provides the basis for emergency disposal.
Owner:HUASHEN GAS BURNING IND TIANJIN

Fluid simulation method based on inter-belt finite element and Lagrange coordinate

ActiveCN104317985APrecise handlingAvoid defects such as volume lock-upSpecial data processing applicationsMixed finite element methodSmoothed finite element method
The invention provides an incompressible fluid simulation analysis method based on an inter-belt finite element and a Lagrange coordinate. The incompressible fluid simulation analysis method comprises the following steps: dividing a computational domain [omega] of two-dimensional incompressible fluid into Ne units according to a traditional finite element mesh, wherein each unit is [omega i]; and constructing a displacement interpolation field of the unit [omega i], constructing a dynamic differential equation of the fluid according to the displacement interpolation field, and solving the dynamic differential equation to obtain each physical parameter of the fluid so as to carry out the kinematic analysis of the fluid. The invention is characterized in that the displacement interpolation field is constructed by utilizing an inter-belt finite element method, and the dynamic differential equation of the fluid is obtained on the basis of a descriptive method of the Lagrange coordinate. The descriptive method of the Lagrange coordinate is combined with the finite element method to solve a problem of the motion simulation of incompressible fluid, and the invention aims to improve the calculation efficiency and precision of analysis by utilizing the advantages of the high precision of the inter-belt finite element and convenience in lower boundary processing and good universality of the Lagrange coordinate.
Owner:DALIAN UNIV OF TECH

Smoke duct device and reducing elbow thereof

The invention discloses a reducing elbow which comprises a reducing section and a body section. The cross section of the reducing section and the cross section of the body section are circular, the reducing section comprises a large end and a small end, the diameter of the reducing section is gradually enlarged from the small end to the large end, the reducing section is curved, the large end of the reducing section is communicated with the body section, and the ratio of the curved radius of the reducing section to the diameter of the small end is 1.0-3.0. The cross section of the reducing section and the cross section of the body section are circular, the diameter of the reducing section is gradually enlarged from the small end to the large end, the reducing section is curved, the large end of the reducing section is communicated with the body section, and therefore reducing and turning are achieved synchronously, reducing has the enough diffusion section, turning has the enough turning radius, the reducing elbow is even in smoke flow field, and a smoke duct body is prevented from vibrating to generate noise. The conclusion that the resistance generated by the reducing elbow is far smaller than that generated by a traditional rectangular reducing elbow is obtained through FLUENT fluid simulation software analog computation. The invention further discloses a smoke duct device.
Owner:CHINA ENERGY ENG GRP GUANGDONG ELECTRIC POWER DESIGN INST CO LTD

Simulative calculation method for engine lubrication system

The invention relates to a simulative calculation method for an engine lubrication system. The method can better guide the design and the development of the lubrication system to improve the development efficiency and save the experimentation cost. Flow analysis is performed on the lubrication system by using a one-dimensional fluid simulation technology in the design method. The method comprisesthe following steps of: A, acquiring related data of each part of the lubrication system, and performing parametric processing; B, building a one-dimensional model; C, performing simulative calculation of different working conditions; and D, analyzing the calculation result, performing optimal design on the lubrication system when the design result does not reach the expectation, and repeating the steps till the calculation result reaches the design index. The simulative calculation method has unique advantages of low cost, high speed, complete data, capability of simulating various differentworking conditions and the like; by using strong functions of a computer and performing one-dimensional simulation on the lubrication system through commercial fluid software, pressure distribution, flow distribution, temperature distribution and the like of the lubrication system can be simulated at the initial stage of design; and by parameter optimization, optimal matching of parameters is obtained. The information acquired by simulation is more comprehensive compared with experimentation, and the simulation can be mutually verified and mutually supplemented with the experimentation. The development efficiency is improved, and massive experimentation cost is saved.
Owner:CHERY AUTOMOBILE CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products