Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

334results about "Installations with capacitive energy storage" patented technology

Discharge Lamp Ballast Device and Lighting Appliance

An inverter controller dives an inverter to operate at a switching frequency selectively from one of a preheating frequency (f1), a starting frequency (f2), and a lighting frequency (f3) which are different from each other, thereby giving a preheating mode, a starting mode, and a lighting mode. A reset means is provided to make the starting mode upon lowering of a voltage supplied to the inverter below a first threshold, while an inverter stop means is provided to stop the inverter upon detection of abnormality of a discharge lamp. A timer generates a signal determining the start of the preheating, starting, and / or lighting modes, and generates a reset signal disable signal for disabling the reset means, an inverter stop disable signal for disabling the inverter stop means. The inverter controller includes a frequency sweep means for varying the switching frequency gradually from the starting frequency to the lighting frequency. The timer disables the reset means only during a period starting from the selection of the preheating frequency and ending when the switching frequency varies to the lighting frequency, and disable the inverter stop means only during a period starting from the selection of the preheating frequency and ending when the switching frequency begins to vary from the starting frequency to the lighting frequency.
Owner:MATSUSHITA ELECTRIC WORKS LTD

High-energy monomode plasma ignition system capable of detecting ionization

ActiveCN102454529AEfficient and economical ionization measurementsRetain inherent advantagesEngine testingMachines/enginesCapacitanceIonization current
The invention discloses a high-energy monomode plasma ignition system capable of detecting ionization, comprising a boosting transformer composed of a primary winding and a secondary winding; a single energy source connected with the primary winding, wherein the single energy source is a capacitor; a spark plug gap connected with the secondary winding, wherein the energy generated by the capacitor generates sparks in the spark plug gap after passing through the primary winding and the secondary winding; an additional circuit, wherein one end of the circuit is connected with the primary discharging end of the capacitor and the other end of the circuit is connected with the spark plug gap. The capacitance energy source can be used to generate primary high-voltage sparks and puncture the spark plug gap, and also provide subsequent currents to continue burning of the high-energy plasma arc. In comparison with the current ignition systems, the plasma ignition system combined with the ionization detection can produce needed high-energy sparks by just one capacitor to ignite gas-oil mixtures, and maintain the high voltage which generates the ionization current, and is convenient to be installed together with a coil ignition system on a spark plug. The plasma ignition system has advantages of small volume, high cost efficiency and so on.
Owner:蓝冠动力技术(苏州)股份有限公司

Method and device for controlling ignition timing of ignition device for internal combustion engine

The invention simplifies the structure of a magneto generator and stabilizes the operation of an internal combustion engine at the time of start-up, thereby providing an ignition device simplified in structure and reduced in size and providing improved safety to the internal combustion engine. In an ignition device for a capacitive discharge internal combustion engine, an ignition timing signal is calculated with a cycle detection signal obtained at a timing at which a forward voltage portion of an output voltage from a generator coil has reached a cycle detection voltage for making continual ignition operations available, and a peak voltage detection signal and a start-up voltage detection signal are obtained in accordance with a delayed reverse voltage portion of the output voltage from the generator coil. In a preset normal region speed or less in which a load is coupled to the engine, an ignition signal is output immediately after the peak voltage detection signal has been generated. In a normal region speed or more, an ignition signal is output after the duration of the ignition timing signal from the point in time of output of the cycle detection signal. At the time of start-up, an ignition signal is output in response to the start-up voltage detection signal according to the cycle detection signal. This eliminates the need of a coil for generating a timing signal and provides a safe start-up operation.
Owner:IIDA ELECTRIC IND
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products