Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

87results about "X-ray tube details" patented technology

Device and method for generating X-rays having different energy levels and material discrimination system

Disclosed is a device and method for generating X-rays having different energy levels as well as a material discrimination system thereof. The method comprises the steps of: generating a first pulse voltage, a second pulse voltage, a third pulse voltage and a fourth pulse voltage, generating a first electron beam having a first beam load and a second electron beam having a second beam load, respectively, based on the first pulse voltage and second pulse voltage, generating a first microwave having a first power and a second microwave having a second power, respectively, based on the third pulse voltage and the fourth pulse voltage, accelerating the first and second electron beams respectively using the first and second microwave to obtain the accelerated first electron beam and the second electron beam, hitting a target with the accelerated first electron beam and the second electron beam to generate a first X-ray and a second X-ray having different energy levels. The X-rays having different energy levels generated by the present invention can be used in the non-destructive inspection for large-sized container cargo at places such as Customs, ports and airports, and in realizing the material discrimination for the inspected object.
Owner:TSINGHUA UNIV +1

Device and method for generating x-rays having different energy levels and material discrimination system

Disclosed is a device and method for generating X-rays having different energy levels as well as a material discrimination system thereof. The method comprises the steps of: generating a first pulse voltage, a second pulse voltage, a third pulse voltage and a fourth pulse voltage, generating a first electron beam having a first beam load and a second electron beam having a second beam load, respectively, based on the first pulse voltage and second pulse voltage, generating a first microwave having a first power and a second microwave having a second power, respectively, based on the third pulse voltage and the fourth pulse voltage, accelerating the first and second electron beams respectively using the first and second microwave to obtain the accelerated first electron beam and the second electron beam, hitting a target with the accelerated first electron beam and the second electron beam to generate a first X-ray and a second X-ray having different energy levels. The X-rays having different energy levels generated by the present invention can be used in the non-destructive inspection for large-sized container cargo at places such as Customs, ports and airports, and in realizing the material discrimination for the inspected object.
Owner:TSINGHUA UNIV +1

X-ray detector, imaging apparatus and calibration method

The present invention relates to an X-ray detector comprising a directly converting semiconductor layer (60) having a plurality of pixels for converting incident radiation into electrical measurement signals with a band gap energy characteristic of the semiconductor layer, wherein said incident radiation is x-ray radiation emitted by an x-ray source (2) or light emitted by at least one light source (30, 33). Further, an evaluation unit (67) is provided for calculating evaluation signals per pixel or group of pixels from first electrical measurement signals generated per pixel or group of pixels when light from said at least one light source at a first intensity is coupled into the semiconductor layer and second electrical measurement signals generated per pixel or group of pixels when light from said at least one light source at a second intensity is coupled into the semiconductor layer, wherein said evaluation unit is configured to detect per pixel or group of pixels a noise peak in said first and second electrical measurement signals and to determine offset and gain per pixel or group of pixels from the detected noise peaks. A detection unit (69) is provided for determining detection signals from electrical measurement signals generated when x-ray radiation is incident onto the semiconductor layer, and a calibration unit (68) is provided for calibrating the detection unit on the basis of the evaluation signals.
Owner:KONINKLJIJKE PHILIPS NV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products