Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

73results about How to "Exact impedance" patented technology

Frequency encoding of resonant mass sensors

A method for the detection of analytes using resonant mass sensors or sensor arrays comprises frequency encoding each sensor element, acquiring a time-domain resonance signal from the sensor or sensor array as it is exposed to analyte, detecting change in the frequency or resonant properties of each sensor element using a Fourier transform or other spectral analysis method, and classifying, identifying, and / or quantifying analyte using an appropriate data analysis procedure. Frequency encoded sensors or sensor arrays comprise sensor elements with frequency domain resonance signals that can be uniquely identified under a defined range of operating conditions. Frequency encoding can be realized either by fabricating individual sensor elements with unique resonant frequencies or by tuning or modifying identical resonant devices to unique frequencies by adding or removing mass from individual sensor elements. The array of sensor elements comprises multiple resonant structures that may have identical or unique sensing layers. The sensing layers influence the sensor elements' response to analyte. Time-domain signal is acquired, typically in a single data acquisition channel, and typically using either (1) a pulsed excitation followed by acquisition of the free oscillatory decay of the entire array or (2) a rapid scan acquisition of signal from the entire array in a direct or heterodyne configuration. Spectrum analysis of the time domain data is typically accomplished with Fourier transform analysis. The methods and sensor arrays of the invention enable rapid and sensitive analyte detection, classification and / or identification of complex mixtures and unknown compounds, and quantification of known analytes, using sensor element design and signal detection hardware that are robust, simple and low cost.
Owner:PALO ALTO SENSOR TECH INNOVATION

Power generating and control apparatus for the treatment of tissue

Apparatus, systems, and methods are provided for the generation and control of energy delivery in a dosage to elicit a therapeutic response in diseased tissue. A balloon catheter can have electrodes attached to a power generator and controller such that the balloon and electrodes contact tissue during energy treatment. Energy selectively may be applied to tissue based on measured impedance to achieve gentle heating. Calibration of the apparatus and identification of attached accessories by computing the circuit impedance prior to energy dosage facilitate regulation of power delivery about a set point. Energy delivery can be controlled to achieve substantially uniform bulk tissue temperature distribution. Energy delivery may beneficially affect nerve activity.
Owner:BOSTON SCI SCIMED INC

Systems and methods for measuring tissue impedance through an electrosurgical cable

The electrosurgical systems and methods of the present disclosure include a tissue resistance measurement system that compensates for capacitive parasitics in a cable connecting an electrosurgical generator to and electrosurgical cable to estimate the real resistance of a tissue load. The electrosurgical generator includes an output stage coupled to an electrical energy source and generates electrosurgical energy. The electrosurgical generator includes a plurality of sensors sensing a voltage and current of the electrosurgical energy and a controller controlling the output stage. The controller includes a calculator that calculates a real part of an impedance based on the sensed voltage and current, an estimator that estimates a resistance of the tissue using a solution to a quadratic equation that is a function of the real part of the impedance, and a control signal generator configured to generate a control signal for the output stage based on the resistance of the tissue.
Owner:TYCO HEALTHCARE GRP LP

Semiconductor device package adapter

A semiconductor device packaged adapter for electrically coupling contacts on a first circuit member to contacts on a second circuit member. The adapter typically includes first and second substrates, each with arrays of terminals. Proximal ends of the first terminals on the first substrate are arranged to be soldered to the contacts on the first circuit member and proximal ends of the) second terminals on the second substrate are arranged to be soldered to the contacts on the second circuit member. Complementary engaging structures located on distal ends of the first and second terminals engage to electrically and mechanically couple the first circuit member to the second circuit member.
Owner:HSIO TECH

Impedance measurement process

Apparatus for use in performing impedance measurements on a subject, the apparatus including a probe having a plurality of electrodes, the probe being configured to allow at least some of the electrodes to be in contact with at least part of the subject and a processing system for, determining at least one first impedance value, measured at a site using a first electrode configuration, determining at least one second impedance value, measured at the site using a second electrode configuration and determining an indicator indicative of the presence, absence or degree of an anomaly using the first and second impedance values.
Owner:IMPEDIMED

Electrode assembly and handpiece with adjustable system impedance, and methods of operating an energy-based medical system to treat tissue

ActiveUS20070083247A1Facilitate accurate impedance matchingFacilitate near-matchingSurgical instruments for heatingTherapeutic coolingEnergy basedImpedance matching
Electrode assemblies and handpieces for energy-based treatment systems that utilize an impedance assembly to facilitate impedance matching between the system and a patient. The electrode assembly and / or handpiece may include one or more circuit elements configured to introduce at least one supplemental impedance into an electrical circuit coupling the electrode assembly and handpiece. The supplemental impedance, which is related to the impedance of the treatment system and patient, is introduced when the electrode assembly is coupled with the handpiece.
Owner:SOLTA MEDICAL

Semiconductor device, system with semiconductor device, and calibration method

Variations of the impedance of each output driver of a semiconductor device can be reduced, and high-speed calibration is achieved. A calibration circuit including a replica circuit having the same configuration as each pull-up circuit or pull-down circuit included in an output driver of a semiconductor device is provided within a chip. During a first calibration operation, the replica circuit is provided with voltage conditions that allow the maximum current to flow through the output driver so that an impedance of the replica circuit is equal to a value of an external resistor. During a second calibration operation, table parameters obtained in the first calibration operation are used to adjust the impedance of the output driver without use of the replica circuit.
Owner:LONGITUDE SEMICON S A R L

Apparatus and methods for measuring defibrillation lead impedance via a high magnitude, short duration current pulse

ActiveUS8352033B2Exact impedanceNot painful to the patientElectrotherapyDiagnostic recording/measuringLead impedanceHigh voltage capacitors
Methods and apparatus for accurately and painlessly measuring the impedance between defibrillation electrodes implanted in a patient utilize a high current test pulse delivered with a sufficiently high current to produce an accurate measurement of the defibrillation electrode impedance while limiting the duration of the test pulse such that the pain sensing cells in the patient do not perceive the test pulse. In one embodiment, the test pulse is generated from the high voltage transformer without storing energy in the high voltage capacitors and is delivered to the defibrillation electrodes in the patient utilizing the high voltage switching circuitry.
Owner:KROLL MARK

Surface shape recognition sensor

A detection element (1A) having a detection electrode (11A) connected to a surface shape detection unit (2) and a detection electrode (12A) connected to a common potential, and a detection element (1B) having a detection electrode (11B) connected to the surface shape detection unit (2) and a detection electrode (12B) connected to a biometric recognition unit (3) are arranged. The surface shape detection unit (2) outputs a signal representing the three-dimensional pattern of the surface shape corresponding to the contact portion to each detection element on the basis of individual capacitances obtained from the detection elements (1A, 1B). The biometric recognition unit (3) determines whether an object (9) is a living body, on the basis of a signal corresponding to the impedance of the object (9) connected between the detection electrode (12B) of the detection element (1B) and the detection electrode (12A) of the detection element (1A).
Owner:NIPPON TELEGRAPH & TELEPHONE CORP

High Accuracy Painless Method for Measuring Defibrillation Lead Impedance

ActiveUS20090099615A1Exact impedanceNot painful to the patientHeart defibrillatorsDiagnostic recording/measuringLead impedanceHigh voltage capacitors
Methods and apparatus for accurately and painlessly measuring the impedance between defibrillation electrodes implanted in a patient utilize a high current test pulse delivered with a sufficiently high current to produce an accurate measurement of the defibrillation electrode impedance while limiting the duration of the test pulse such that the pain sensing cells in the patient do not perceive the test pulse. In one embodiment, the test pulse is generated from the high voltage transformer without storing energy in the high voltage capacitors and is delivered to the defibrillation electrodes in the patient utilizing the high voltage switching circuitry.
Owner:KROLL MARK

Method and apparatus for implantable cardiac lead integrity analysis

The present invention relates, generally, to scientific and medical system methods for diagnosis of implantable cardioverter defibrillator (ICD) lead conductor anomalies, in particular conductor migration and externalization within an ICD implantable cardiac lead. The method uses an “imaginary” component of the high frequency transmission line impedance having certain spectral changes that correspond to movements of the conductor or an “imaginary impedance”. This allows the detection of conductor migration and small insulation failures.
Owner:LAMBDA NU TECH

Calibration circuit, semiconductor device including the same, and method of adjusting output characteristics of semiconductor device

A calibration circuit includes: a replica buffer that drives a calibration terminal ZQ; a reference voltage generating circuit that generates a reference voltage VMID; a comparing circuit that compares a voltage appearing in the calibration terminal ZQ with the reference voltage VMID; an impedance adjusting circuit that changes an output impedance of the replica buffer based on a result of comparison carried out by the comparing circuit; and a reference voltage adjusting circuit that adjusts the reference voltage VMID. With this arrangement, the reference voltage VMID can be offset by taking into account a resistance component present between the calibration terminal ZQ and the external terminal, and therefore, a more accurate calibration operation can be carried out.
Owner:LONGITUDE LICENSING LTD

Method and Apparatus for Implantable Cardiac Lead Integrity Analysis

ActiveUS20150005862A1Accurately measure impedanceImprove securityInternal electrodesExternal electrodesIcd implantationEngineering
Scientific and medical system circuitry for diagnosis of implantable cardioverter defibrillator (ICD) lead conductor anomalies, in particular conductor migration and externalization within an ICD implantable cardiac lead. The system determines an “imaginary” component of the high frequency transmission line impedance having certain spectral changes that correspond to radially outward movements or local externalization of a conductor within a lead body allowing for the detection of conductor migration and small insulation failures.
Owner:LAMBDA NU TECH

Calibration circuit, semiconductor device including the same, and method of adjusting output characteristics of semiconductor device

A calibration circuit includes: a replica buffer that drives a calibration terminal ZQ; a reference voltage generating circuit that generates a reference voltage VMID; a comparing circuit that compares a voltage appearing in the calibration terminal ZQ with the reference voltage VMID; an impedance adjusting circuit that changes an output impedance of the replica buffer based on a result of comparison carried out by the comparing circuit; and a reference voltage adjusting circuit that adjusts the reference voltage VMID. With this arrangement, the reference voltage VMID can be offset by taking into account a resistance component present between the calibration terminal ZQ and the external terminal, and therefore, a more accurate calibration operation can be carried out.
Owner:LONGITUDE LICENSING LTD

Fuel cell system

When the operation point of a DC / DC converter, which steps up / down the output voltage of a fuel cell stack, is in a range of reduction in response capability and further there is issued a request of determining an AC impedance, a controller switches numbers of the drive phases of the DC / DC converter to determine an AC impedance of the fuel cell stack. If the operation point of the DC / DC converter is in the range of reduction in response capability and further the precision of determining the AC impedance is reduced, then the determination of AC impedance in the range of reduction in response capability is inhibited and the switching of the phases of the DC / DC converter is implemented, thereby causing the operation point of the DC / DC converter to be out of the range of reduction in response capability, with the result that the precision of determining the AC impedance can be raised.
Owner:TOYOTA JIDOSHA KK

Method for identifying low-voltage distribution network topology and line impedance in station area

The invention discloses a method for identifying a low-voltage distribution network topology and a line impedance in a station area, and belongs to the technical field of a low-voltage distribution network. The method comprises the steps of adding an edge computing terminal and a plurality of electrical measurement devices to the low-voltage distribution network in the station area firstly; when the low-voltage distribution network topology of the station area is identified each time, determining the affiliation relation of the station area of the measurement devices and a phase type of a communication access phase according to a power line carrier communication relation between the measurement device and the edge computing terminal, enabling each measurement device and the edge computingterminal to sample voltage and current waveforms after time synchronization and updating the voltage and current waveforms to the edge computing terminal, and enabling the edge computing terminal to identify the same bus-bar measurement device and an upper-level measurement device of the bus-bar according to the waveform data; and after the topology is identified multiple times, obtaining a finaltopology identification result and performing impedance calculation. According to the method for identifying the low-voltage distribution network topology and the line impedance in the station area disclosed by the invention, the accuracy rate for identifying the low-voltage distribution network topology and the line impedance is high, the speed is rapid, the information collection capability of the intelligent equipment of the low-voltage distribution network is fully exerted, the equipment cost is low and the method has no influence on power quality.
Owner:巴祎

Systems and methods for measuring tissue impedance through an electrosurgical cable

The electrosurgical systems and methods of the present disclosure include a tissue resistance measurement system that compensates for capacitive parasitics in a cable connecting an electrosurgical generator to and electrosurgical cable to estimate the real resistance of a tissue load. The electrosurgical generator includes an output stage coupled to an electrical energy source and generates electrosurgical energy. The electrosurgical generator includes a plurality of sensors sensing a voltage and current of the electrosurgical energy and a controller controlling the output stage. The controller includes a calculator that calculates a real part of an impedance based on the sensed voltage and current, an estimator that estimates a resistance of the tissue using a solution to a quadratic equation that is a function of the real part of the impedance, and a control signal generator configured to generate a control signal for the output stage based on the resistance of the tissue.
Owner:TYCO HEALTHCARE GRP LP

High accuracy foamed coaxial cable and method for manufacturing the same

A foamed coaxial cable with high precision according to the present invention comprises: an internal conductor twisted with a plurality of electrically conductive wires; a foamed insulator with its low dielectric constant made of a porous tape body formed on the outer periphery of this internal conductor; an external conductor made of a number of electrically conductive thin wires braided on the outer periphery of this foamed insulator; and an outer sheath made of a resin having heat resistance formed on the outer periphery of this external insulator, wherein the precision of external diameter of the internal conductor is 4 / 1000 mm or less, the precision of external diameter size of the foamed insulator is ±0.02 mm, the insulator is formed in a completely circular shape, the precision of external diameter size of the external conductor is ±2%, the external conductor is formed in a completely circular shape, and the precision of characteristic impedance value between the internal conductor and the external conductor having the foamed insulator interposed therebetween is ±1 Ω.
Owner:HIRAKAWA HEWTECH +1

Method for sequentially measuring impedance, measurement device, and fuel cell system

Provided are a sequential impedance measurement device and a method for sequentially measuring impedance. While applying a signal having a power output fluctuation similar to that of normal operation, it is possible to carry out a quick measurement with relatively high precision and in a broad frequency range. Also, the device and the method can simultaneously determine phenomena which occur in different frequency ranges. Disclosed is a sequential impedance measurement device in which impedance of a fuel cell is sequentially measured in a control system, the control system controlling the fuel cell by using a power indication value of a control processor, the device including: an M-sequence-signal-generating section; a superimposed-signal-generating section; a signal-processing section; a signal-adding unit; a current and voltage measuring unit; and an impedance calculator, wherein a method for controlling the fuel cell by the control processor is modified according to a calculation result of the impedance calculator.
Owner:HONDA MOTOR CO LTD

Termination impedance tuning circuit

An impedance adjustment system comprising current source, a first series and a second series connected string of predetermined number of resistors, a first and second switch network, a first, second and third logic circuit and a comparator. By applying the principles of the present invention, embodiments can be made in which variations in a Silicide block of resistors used to terminate a signal line are “tuned out” to get a more precise termination impedance. Embodiments may be made that hold the termination impedance substantially constant over time by continually adjusting in response to variations in process, temperature and supply voltage. IDDQ requirements can be met by latching, by double buffering, the outputs of comparators providing an encoded resistor network setting for the termination impedance, and then powering down the circuit. Embodiments of the present invention avoid the use of trims and fuses, thus reducing fabrication cost. Finally, embodiments of the present invention may be made that do not require a clock.
Owner:TEXAS INSTR INC

High frequency circuit module

A high frequency circuit module includes a variable inductance circuit portion and a reactance circuit portion. The variable inductance circuit portion is connected between an antenna port and ground. The variable reactance circuit is connected between the antenna port and a front-end port. The variable inductance circuit portion includes a first inductor, a second inductor, and a switch. The first inductor is connected between the antenna port and the ground. The second inductor and the switch are connected in series, and this series circuit is connected in parallel to the first inductor.
Owner:MURATA MFG CO LTD

Switchable dual-band filter

Disclosed is a switchable dual-band filter, which comprises a first and a second switchable resonators, a coupling structure having two ends respectively connecting the first and the second switchable resonators, an input impedance conversion circuit connecting an input terminal and the first resonator, and an output impedance conversion circuit connecting an output terminal and the second resonator. The coupling structure couples the first resonators to the second resonator, and via verse. The input / output impedance conversion circuit converts the impedance on the input / output terminal into two distinct impedances that correspond to a first and a second operating frequency. The filter is simple in structure, occupies less circuit area, and is cost-effective in manufacturing. The impedance at both operating passbands can also be matched properly.
Owner:IND TECH RES INST

Method and Apparatus for Implantable Cardiac Lead Integrity Analysis

The present invention relates, generally, to scientific and medical system methods for diagnosis of implantable cardioverter defibrillator (ICD) lead conductor anomalies, in particular conductor migration and externalization within an ICD implantable cardiac lead. The method uses an “imaginary” component of the high frequency transmission line impedance having certain spectral changes that correspond to movements of the conductor or an “imaginary impedance”. This allows the detection of conductor migration and small insulation failures.
Owner:LAMBDA NU TECH

Power generating and control apparatus for the treatment of tissue

Apparatus, systems, and methods are provided for the generation and control of energy delivery in a dosage to elicit a therapeutic response in diseased tissue. A balloon catheter can have electrodes attached to a power generator and controller such that the balloon and electrodes contact tissue during energy treatment. Energy selectively may be applied to tissue based on measured impedance to achieve gentle heating. Calibration of the apparatus and identification of attached accessories by computing the circuit impedance prior to energy dosage facilitate regulation of power delivery about a set point. Energy delivery can be controlled to achieve substantially uniform bulk tissue temperature distribution. Energy delivery may beneficially affect nerve activity.
Owner:BOSTON SCI SCIMED INC

Data mining based approach for online calibration of phasor measurement unit (PMU)

Data quality of Phasor Measurement Unit (PMU) is receiving increasing attention as it has been identified as one of the limiting factors that affect many wide-area measurement system (WAMS) based applications. In general, existing PMU calibration methods include offline testing and model based approaches. However, in practice, the effectiveness of both is limited due to the very strong assumptions employed. This invention presents a novel framework for online error detection and calibration of PMU measurement using density-based spatial clustering of applications with noise (DBSCAN) based on much relaxed assumptions. With a new problem formulation, the proposed data mining based methodology is applicable across a wide spectrum of practical conditions and one side-product of it is more accurate transmission line parameters for the energy management system (EMS) database and protective relay settings. Case studies are presented to demonstrate the effectiveness of the proposed method.
Owner:GEIRI NORTH AMERICA

Switchable dual-band filter

A switchable dual-band filter comprises first and second switchable resonators, a coupling structure having two ends respectively connecting the first and the second switchable resonators, an input impedance conversion circuit connecting an input terminal and the first resonator, and an output impedance conversion circuit connecting an output terminal and the second resonator. The coupling structure couples the first resonator to the second resonator, and vice versa. The input / output impedance conversion circuit converts the impedance on the input / output terminal into two distinct impedances that correspond to a first and a second operating frequency. The filter is simple in structure, occupies a smaller circuit area, and is cost-effective in manufacturing. The impedance at both operating passbands can also be matched properly.
Owner:IND TECH RES INST

Measurement board for electronic device test apparatus

A performance board able to secure low loss, low reflection, stable transmission characteristics even when using a high frequency signal to test an electronic device and able to suppress signal leakage to the outside and entry of noise, provided with a base board having a signal pattern electrically connected with a socket formed on its front surface, a coaxial connector to which a coaxial cable electrically connecting the performance board and test apparatus is connected, passing through the base board from the back surface toward the front surface, and having a front exposed part of the center contact bent and electrically connected to the signal pattern, and a cover member covering the front exposed part of the center contact and correcting the impedance of the front exposed part.
Owner:ADVANTEST CORP

Surface shape recognition sensor

A detection element (1A) having a detection electrode (11A) connected to a surface shape detection unit (2) and a detection electrode (12A) connected to a common potential, and a detection element (1B) having a detection electrode (11B) connected to the surface shape detection unit (2) and a detection electrode (12B) connected to a biometric recognition unit (3) are arranged. The surface shape detection unit (2) outputs a signal representing the three-dimensional pattern of the surface shape corresponding to the contact portion to each detection element on the basis of individual capacitances obtained from the detection elements (1A, 1B). The biometric recognition unit (3) determines whether an object (9) is a living body, on the basis of a signal corresponding to the impedance of the object (9) connected between the detection electrode (12B) of the detection element (1B) and the detection electrode (12A) of the detection element (1A).
Owner:NIPPON TELEGRAPH & TELEPHONE CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products