Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

45results about How to "Small inclination" patented technology

Cutting insert, cutting tool, and method of manufacturing machined product using them

ActiveUS20130108388A1Cutting resistance can be reducedReduce exposureTransportation and packagingMilling cuttersEngineering
A cutting insert includes an upper surface; a lower surface; a side surface which is connected to each of the upper surface and the lower surface and includes a first side surface, a second side surface and a third side surface being adjacent to each other in order; an upper cutting edge including an upper major cutting edge located at an intersection of the upper surface and the first side surface, and an upper flat cutting edge located closer to the upper major cutting edge in an intersection of the upper surface and the second side surface; and a lower cutting edge including a lower major cutting edge located at an intersection of the lower surface and the third side surface, and a lower flat cutting edge located closer to the lower major cutting edge in an intersection of the lower surface and the second side surface. The second side surface comprises an upper flank surface connected to the upper flat cutting edge, and a lower flank surface connected to the lower flat cutting edge. As going from the upper surface to the lower surface, the upper flank surface is closer to a central axis extending between the upper surface and the lower surface and the lower flank surface is separated from the central axis in a side sectional view. A cutting tool including the cutting insert, and a method of manufacturing a machined product by using the cutting tool are also provided.
Owner:KYOCERA CORP

AGV chassis structure capable of adapting to ground deformation

The invention provides an AGV chassis structure capable of adapting to ground deformation. The AGV chassis structure comprises a bearing vehicle frame, a first movable vehicle frame, a second movable vehicle frame, a drive device and bearing wheels. The inner end of the first movable vehicle frame and the inner end of the second movable vehicle frame are hinged through a hinging shaft. The drive device comprises drive motors, drive shafts and drive wheels, wherein the drive shafts are coaxially connected with the hinging shaft, and the drive motors drive the drive wheels through the drive shafts. A first hinging hole is formed in the first movable vehicle frame, a second hinging hole is formed in the second movable vehicle frame, the bearing vehicle frame is hinged to the first hinging hole through a first connecting pin and hinged to the second hinging hole through a second connecting pin, and the second hinging hole is a kidney-shaped hole. When the first movable vehicle frame and the second movable vehicle frame relatively rotate around the hinging shaft, the first connecting pin moves relative to the first hinging hole, and the second connecting pin moves relative to the second hinging hole. When the AGV chassis structure encounters the uneven ground, the first movable vehicle frame and the second movable vehicle frame rotate relatively, it is guaranteed that the drive wheels are landed, and the uneven ground is adjusted.
Owner:GUANGDONG JATEN ROBOT & AUTOMATION

Cutting insert, cutting tool, and method of manufacturing machined product using them

A cutting insert includes an upper surface; a lower surface; a side surface which is connected to each of the upper surface and the lower surface and includes a first side surface, a second side surface and a third side surface being adjacent to each other in order; an upper cutting edge including an upper major cutting edge located at an intersection of the upper surface and the first side surface, and an upper flat cutting edge located closer to the upper major cutting edge in an intersection of the upper surface and the second side surface; and a lower cutting edge including a lower major cutting edge located at an intersection of the lower surface and the third side surface, and a lower flat cutting edge located closer to the lower major cutting edge in an intersection of the lower surface and the second side surface. The second side surface comprises an upper flank surface connected to the upper flat cutting edge, and a lower flank surface connected to the lower flat cutting edge. As going from the upper surface to the lower surface, the upper flank surface is closer to a central axis extending between the upper surface and the lower surface and the lower flank surface is separated from the central axis in a side sectional view. A cutting tool including the cutting insert, and a method of manufacturing a machined product by using the cutting tool are also provided.
Owner:KYOCERA CORP

An AGV Chassis Structure Adaptable to Ground Deformation

The invention provides an AGV chassis structure capable of adapting to ground deformation. The AGV chassis structure comprises a bearing vehicle frame, a first movable vehicle frame, a second movable vehicle frame, a drive device and bearing wheels. The inner end of the first movable vehicle frame and the inner end of the second movable vehicle frame are hinged through a hinging shaft. The drive device comprises drive motors, drive shafts and drive wheels, wherein the drive shafts are coaxially connected with the hinging shaft, and the drive motors drive the drive wheels through the drive shafts. A first hinging hole is formed in the first movable vehicle frame, a second hinging hole is formed in the second movable vehicle frame, the bearing vehicle frame is hinged to the first hinging hole through a first connecting pin and hinged to the second hinging hole through a second connecting pin, and the second hinging hole is a kidney-shaped hole. When the first movable vehicle frame and the second movable vehicle frame relatively rotate around the hinging shaft, the first connecting pin moves relative to the first hinging hole, and the second connecting pin moves relative to the second hinging hole. When the AGV chassis structure encounters the uneven ground, the first movable vehicle frame and the second movable vehicle frame rotate relatively, it is guaranteed that the drive wheels are landed, and the uneven ground is adjusted.
Owner:GUANGDONG JATEN ROBOT & AUTOMATION
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products