Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

47 results about "Dual quaternion" patented technology

In mathematics, the dual quaternions are an algebra isomorphic to a Clifford algebra of a degenerate quadratic space. In ring theory, dual quaternions are a ring constructed in the same way as the quaternions, except using dual numbers instead of real numbers as coefficients. A dual quaternion can be represented in the form p + ε q, where p and q are ordinary quaternions and ε is the dual unit (which satisfies εε = 0) and commutes with every element of the algebra. Unlike quaternions, they do not form a division ring.

Strapdown inertial navigation method of dual quaternion based on frequency domain analysis method

The invention discloses a strapdown inertial navigation method of dual quaternion based on a frequency domain analysis method. The invention is designed aiming at the following problem: various errors of carrier movement can not be fully compensated because of polynomial fitting of the angular velocity and the specific force of the carrier in the traditional time-domain strapdown inertial navigation algorithm. The principle of the invention is as follows: carrying out smooth continuation and discrete Fourier transform on the increment signal output by an inertial navigation device and the navigation information obtained in the solving process by utilizing the frequency domain analysis method, then solving the spectrum signal obtained through transform by utilizing the strapdown inertial navigation algorithm of dual quaternion realized in the frequency domain and finally carrying out inverse Fourier transform on the signal obtained by solving to obtain the navigation solution in the time domain. Compared with the existing time-domain strapdown inertial navigation methods of dual quaternion, the method is characterized by taking full advantage of the information of the signal output by the inertial navigation device in each frequency range and having higher precision under high dynamic environment.
Owner:SOUTHEAST UNIV

Method and system for robot hand-eye calibration

The invention relates to a method for robot hand-eye calibration. A calibration plate provided with a calibration point is fixed at the tail end of a robot. The calibration method comprises the following steps that pose information of a tool center point of the robot in a robot base coordinate system is acquired, and the pose information is converted into a dual quaternion form to obtain hand movement spiral information; image information of the calibration plate is acquired, coordinate information of the calibration point in a camera coordinate system is calculated according to the image information, and the coordinate information is converted into a dual quaternion form to obtain eye movement spiral information; a movement transformation equation between the hand movement spiral information and the eye movement spiral information is established, and matrix factors of the movement transformation equation are extracted; a plurality of matrix factors of the robot in different poses areacquired, a transformation matrix is constructed according to each matrix factor; and each transformation matrix is subject to singular value decomposition to obtain a unit dual quaternion of the robot base coordinate system relative to the camera coordinate system. The method has the advantages of being high in calibration speed and simple in calculation.
Owner:武汉库柏特科技有限公司

Inertial navigation system transfer alignment modeling method based on dual quaternion

The invention provides an inertial navigation system transfer alignment modeling method based on dual quaternion. A nominal dual quaternion between a main inertial navigation system and an auxiliary inertial navigation system is constructed, the dual quaternion is calculated to describe an auxiliary inertial navigation system carrier system relative to a main inertial navigation system carrier system, rotation and translation motion of the carrier systems are calculated, and a normal dual quaternion differential equation of transfer alignment is constructed by reasoning spinor expressions of relative rotation and translation motion of the main inertial navigation system and the auxiliary inertial navigation system and calculated; a dual quaternion error equation is obtained in combination with an accelerometer parameter error equation and a gyroscope error differential equation; a systematic observation equation is constructed by using the linear velocity of an accelerometer and the angular velocity of rotation of a gyroscope, an initial calibration parameter of the auxiliary inertial navigation system is calculated through kalman filter iteration, the effects of rotation and translation separation calculation on coning errors and sculling errors are eliminated, and the calculation accuracy and the calculation efficiency are effectively improved.
Owner:ZHENGZHOU UNIVERSITY OF LIGHT INDUSTRY

Hand motion three-dimensional simulation method based on dual quaternion

The invention provides a hand motion three-dimensional simulation method based on dual quaternion. The hand motion three-dimensional simulation method comprises the following steps of: (1) inputting a virtual hand grid model for modeling and a motion skeleton model corresponding to the virtual hand grid model; (2) determining an initial position of each vertex in the virtual hand grid model and normal of each vertex; (3) calculating dual quaternion of each joint point in the motion skeleton model; (4) aiming at each vertex in the virtual hand grid model, searching the dual quaternion corresponding to the skeleton which is bound with each vertex and assigning respective weight value, and then calculating the dual quaternion after linear mixture; (5) unitizing the double quaternion after linear mixture; and (6) calculating vertex positions and normals after deformation of all the vertices for hand three-dimensional simulation. The hand motion three-dimensional simulation method recalculates the positions and normals after the deformation of the vertices for hand three-dimensional simulation by calculating and unitizing the double quaternion after the linear mixture so as to enable a virtual hand to have stronger motion and visual reality sense and avoid the phenomena such as wrapping with candy wrappers and collapse.
Owner:ZHEJIANG UNIV

LiDAR point cloud no-initial-value registration method based on planar feature constraint

The invention discloses a LiDAR point cloud no-initial-value registration method based on planar feature constraint. According to the invention, expression of plane features in a three-dimensional space is realized by adopting a four-parameter method; parameters of homonymous plane features of the registered adjacent observation stations are equal to serve as constraint conditions, a three-dimensional space similarity transformation objective function based on dual quaternion description under plane feature constraint is constructed according to the least square criterion, and non-initial-value solving of the registration parameters is achieved through extreme value analysis of the objective function. The four-parameter expression of the plane features provides a simpler and more effective mode for the comparison of homonymous features; compared with a vector algebra, the spatial similarity transformation model based on dual quaternion description is simpler in expression form and fewer in additional constraint conditions in the registration process; compared with an iteration method, the algorithm has the advantages that the parameters are directly solved on the premise that the initial values of the parameters of the space similarity transformation model do not need to be determined in advance, the stability of the algorithm is better, and the reliability is higher.
Owner:CHINA UNIV OF MINING & TECH

Method for identifying position-independent errors of double rotating shafts of cradle-type five-axis machine tool

The invention discloses a method for identifying position-independent errors of double rotating shafts of a cradle-type five-axis machine tool. The invention discloses a method for detecting the position-independent errors of double rotary tables of the cradle-type five-axis machine tool at any rotating shaft position, and the method is characterized in that a universal double-rotary-table linkage track is designed by utilizing a ball bar instrument aiming at the cradle-type five-axis machine tool with any rotary table axis position structure, a kinematics error model between a workpiece end and a cutter end is established according to a global representation form of unit dual quaternion and the error definition, the problem that the motion of the ball bar instrument and the collection rate are not synchronous is solved through the uniform differentiation processing of a motion track, and the simplified error kinematics model is decoupled based on a least square algorithm in combination with the experimental data of the ball-bar instrument so as to identify the position-independent combination error of the double rotary tables. According to the method, the position-independent geometric error identification is carried out through a single experiment track, the method is suitable for various cradle-type five-axis machine tools with any rotating shaft position structures, and the method is simple and rapid and is good in practicability.
Owner:TIANJIN POLYTECHNIC UNIV

Non-cooperative spacecraft pose integrated estimation and inertial parameter determination method

The invention relates to a non-cooperative spacecraft pose integrated estimation and inertial parameter determination method, and provides a non-cooperative spacecraft pose and inertial parameter estimation method based on dual quaternion aiming at the problem of missing of relative angular velocity and relative linear velocity measurement information of a target spacecraft in a visual navigation process. The method comprises the following steps: a space rigid spacecraft six-degree-of-freedom attitude kinematics and dynamics model described by a dual quaternion frame is established for accurately describing an inherent coupling relationship between relative attitude motion and relative position motion; then error amounts of a dual quaternion vector part, a dual angular velocity vector part and a rotational inertia ratio of the target spacecraft are selected as state variables, and a state equation and an observation equation are determined; finally, a state correction method of error dual quaternion is given, a multiplicative extended Kalman filter is designed, the real-time pose and inertial parameters of the target spacecraft are estimated online, and the on-orbit task execution precision is improved.
Owner:BEIHANG UNIV

View registration method, system and equipment based on dual quaternion and storage medium

The invention discloses a view registration method, system and equipment based on dual quaternion and a storage medium, and the method comprises the steps of obtaining the multi-frame point cloud data, and selecting a first frame point cloud in the multi-frame point cloud data as a world coordinate system; performing any two adjacent frames of registration by adopting an ICP algorithm to obtain each frame of point cloud data and a registration processing result; obtaining the rigid transformation by adopting a dual quaternion mixing method; obtaining new multi-frame point cloud data; adoptingan ICP algorithm to obtain new multi-frame point cloud data and a registration processing result; and judging whether the registration processing result converges or not until the registration processing result converges. According to the method, the problem of registration failure caused by the fact that data cannot be converged in the registration process only by adopting an ICP algorithm in theprior art is solved; and through fusion of a dual quaternion mixing method and an ICP algorithm, the registration errors generated in a multi-view pairwise registration process are reduced, so that the registration precision is improved.
Owner:BEIJING JINGDONG SHANGKE INFORMATION TECH CO LTD +1

Strapdown inertial navigation method of dual quaternion based on frequency domain analysis method

The invention discloses a strapdown inertial navigation method of dual quaternion based on a frequency domain analysis method. The invention is designed aiming at the following problem: various errors of carrier movement can not be fully compensated because of polynomial fitting of the angular velocity and the specific force of the carrier in the traditional time-domain strapdown inertial navigation algorithm. The principle of the invention is as follows: carrying out smooth continuation and discrete Fourier transform on the increment signal output by an inertial navigation device and the navigation information obtained in the solving process by utilizing the frequency domain analysis method, then solving the spectrum signal obtained through transform by utilizing the strapdown inertial navigation algorithm of dual quaternion realized in the frequency domain and finally carrying out inverse Fourier transform on the signal obtained by solving to obtain the navigation solution in the time domain. Compared with the existing time-domain strapdown inertial navigation methods of dual quaternion, the method is characterized by taking full advantage of the information of the signal outputby the inertial navigation device in each frequency range and having higher precision under high dynamic environment.
Owner:SOUTHEAST UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products