Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

125 results about "Geometry processing" patented technology

Geometry processing, or mesh processing, is an area of research that uses concepts from applied mathematics, computer science and engineering to design efficient algorithms for the acquisition, reconstruction, analysis, manipulation, simulation and transmission of complex 3D models. As the name implies, many of the concepts, data structures, and algorithms are directly analogous to signal processing and image processing. For example, where image smoothing might convolve an intensity signal with a blur kernel formed using the Laplace operator, geometric smoothing might be achieved by convolving a surface geometry with a blur kernel formed using the Laplace-Beltrami operator.

Geometric processing stage for a pipelined graphic engine, corresponding method and computer program product therefor

A geometric processing stage for a pipelined engine for processing video signals and generating processed video signal in space coordinates (S) adapted for display on a screen. The geometric processing stage includes: a model view module for generating projection coordinates of primitives of the video signals in a view space, said primitives including visible and non-visible primitives, a back face culling module arranged downstream of the model view module for at least partially eliminating the non visible primitives, a projection transform module for transforming the coordinates of the video signals from view space coordinates into normalized projection coordinates (P), and a perspective divide module for transforming the coordinates of the video signals from normalized projection (P) coordinates into screen space coordinates (S). The back face culling module is arranged downstream the projection transform module and operates on normalized projection (P) coordinates of said primitives. The perspective divide module is arranged downstream the back face culling module for transforming the coordinates of the video signals from normalized projection (P) coordinates into screen space coordinates (S). A circuit in the back face culling module can be shared with a standard three dimension back face culling operation when necessary. An application is in graphic engines using standard graphics language like OpenGL and NokiaGL.
Owner:STMICROELECTRONICS (RES & DEV) LTD

Method for reconstructing model after drilling surface grid model of rigid object

InactiveCN101706830AProcess of omitting space divisionSimplified Intersection Detection AlgorithmSpecial data processing applicationsComputation complexityThree-dimensional space
The invention discloses a method for reconstructing a model after drilling a surface grid model of a rigid object, which aims to simplify a three-dimensional Boolean operation problem into a two-dimensional Boolean operation problem and reduce the computational complexity of an intersecting detection process of in model Boolean operation so as to achieve the real-time performance of model reconstruction. The method comprises the following steps of: firstly detecting triangular surface sheets intersected with cutting curved surfaces, moving grid peaks outside the intersected curved surfaces of the triangular surface sheets onto the cutting curved surfaces, then preprocessing model surface grids to realize the classified division of the triangular surface sheets on the surface of the grid model, and finally dynamically reconstructing the grid model in Boolean operation geometric processing. A two-dimensional Boolean operation processing method can be directly adopted to realize the Boolean operation geometric processing for the grid model in three-dimensional space, thereby saving the process of space division on the surface of the model, simplifying an intersecting detection algorithm, improving the operation efficiency and achieving the effect of real-time processing.
Owner:NAT UNIV OF DEFENSE TECH

Optical remote sensing satellite rigorous imaging geometrical model building method

The invention provides an optical remote sensing satellite rigorous imaging geometrical model building method. The optical remote sensing satellite rigorous imaging geometrical model building method comprises the following steps that the geometrical relationship between the image point coordinates of an optical remote sensing satellite and the satellite is determined according to design parameters and on-orbit calibration parameters of an optical remote sensing satellite camera and the installation relation of the camera and the satellite; the shooting position of a satellite image is determined according to the GPS carried by the optical remote sensing satellite, the observation data of a laser corner reflector and the installation relation of the laser corner reflector and the satellite; the shooting angle of the satellite image is determined according to a star sensor carried by the optical remote sensing satellite and the observation data of a gyroscope and the installation relation of the gyroscope and the optical remote sensing satellite, a collinearity equation of all image points of the optical remote sensing satellite is built, and a rigorous imaging geometrical model of optical remote sensing satellite images is formed. The optical remote sensing satellite rigorous imaging geometrical model building method is the basis of optical remote sensing satellite follow-up geometrical imaging processing and application.
Owner:SATELLITE SURVEYING & MAPPING APPL CENTSASMAC NAT ADMINISTATION OF SURVEYING MAPPING & GEOINFORMATION OF CHINANASG

Method for modeling and simulating door lock system based on vehicle crash safety

InactiveCN102201016AAccurate Evaluation of Crash SafetyCrash Safety EvaluationAccident situation locksSpecial data processing applicationsSimulationGeometry processing
The invention discloses a method for modeling and simulating a door lock system based on vehicle crash safety. The method comprises the following steps of: A, preliminarily modeling the door lock system: performing geometry processing modeling and meshing on the door lock system, and exerting a motion relation restraint on components of the door lock system; B, simulating a pull rope mechanism: simulating the pull rope mechanism by using a mechanism with an equivalent synthesized spring and deducing expressions of an initial torque and an elasticity coefficient of the equivalent synthesized spring; C, inputting parameter information into the door lock system, wherein the parameter information comprises spring information, material information of the system components and quality information of the system components; and D, transferring the current door lock system model into a whole vehicle crash finite element calculation model and performing crash simulation calculation, and determining the crash safety performance of the door lock system by analyzing a simulation result. By the method, mechanism motion and component deformation of the door lock system at the moment of vehicle crash can be simulated precisely, so that the crash safety performance can be evaluated and analyzed accurately, the product design period can be shortened and the experimental cost is saved; therefore, the practicability is high.
Owner:SAIC GENERAL MOTORS +1

Method of rendering pixel-composited images for a graphics-based application running on a computing system embodying a multi-mode parallel graphics rendering system

A method of rendering pixel-composited images for a graphics-based application running on a computing system embodying a multi-mode parallel graphics rendering system (MMPGRS). The MMPGRS includes a plurality of graphic processing pipelines (GPPLs) supporting a parallel graphics rendering process employing one or more modes of parallel operation selected from the group consisting of object division, image division, and time division. Each mode of parallel operation has decomposition, distribution and recomposition stages. The MMPGRS employs one or more modes of said parallel operation in order to execute graphic commands, and process graphics data, and render pixel-composited images containing graphics for display on a display device during the run-time of said graphics-based application. The MMPGRS further includes a primary GPPL and at least one secondary GPPL, and wherein each GPPL includes (i) a GPU having a geometry processing subsystem provided with a programmable vertex shader, and a pixel processing subsystem provided with a programmable fragment shader, and (ii) video memory including a frame buffer (FB) having depth and color frame buffers for buffering pixel depth and color value, respectively. During the recomposition stage of the object division mode, the pixel depth and color values are moved from the frame buffers in the secondary GPPL, to the frame buffers in the primary GPPL, by way of inter-GPPL communication, and thereafter, the pixel depth and color values are merged with their counterparts, within the frame buffer of the primary GPPL, using the programmable vertex shader provided in the geometry processing subsystem and / or the programmable fragment shader provided in the pixel processing subsystem.
Owner:GOOGLE LLC +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products