Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1463 results about "Non orthogonal" patented technology

Simply put, orthogonality means “uncorrelated.” An orthogonal model means that all independent variables in that model are uncorrelated. If one or more independent variables are correlated, then that model is non-orthogonal.

Hexagonal architecture

InactiveUS6407434B1Reduce total wirelength interconnect congestionReduce the numberTransistorSemiconductor/solid-state device detailsCapacitanceElectrical conductor
Several inventions are disclosed. A cell architecture using hexagonal shaped cells is disclosed. The architecture is not limited to hexagonal shaped cells. Cells may be defined by clusters of two or more hexagons, by triangles, by parallelograms, and by other polygons enabling a variety of cell shapes to be accommodated. Polydirectional non-orthogonal three layer metal routing is disclosed. The architecture may be combined with the tri-directional routing for a particularly advantageous design. In the tri-directional routing arraingement, electrical conductors for interconnecting terminals of microelectronic cells of an integrated circuit preferrably extend in three directions that are angularly displaced from each other by 60°. The conductors that extend in the three directions are preferrably formed in three different layers. A method of minimizing wire length in a semiconductor device is disclosed. A method of minimizing intermetal capacitance in a semiconductor device is disclosed. A novel device called a "tri-ister" is disclosed. Triangular devices are disclosed, including triangular NAND gates, triangular AND gates, and triangular OR gates. A triangular op amp and triode are disclosed. A triangular sense amplifier is disclosed. A DRAM memory array and an SRAM memory array, based upon triangular or parallelogram shaped cells, are disclosed, including a method of interconnecting such arrays. A programmable variable drive transistor is disclosed. CAD algorithms and methods are disclosed for designing and making semiconductor devices, which are particularly applicable to the disclosed architecture and tri-directional three metal layer routing.
Owner:BELL SEMICON LLC

Approach for routing an integrated circuit

A computer-implemented approach for routing an integrated circuit using non-orthogonal routing is accomplished during two phases: a global routing phase and a detailed routing phase. During global routing, routing indicators, in the form of hint polygons, are added to the integrated circuit layout and strategy lists, that include bias directions and straying limits, are generated for the new wires to be added. The hint polygons and strategy lists are used during detailed routing to aid in placing the new wires. If obstacle conflicts or insufficient space problems prevent the detailed routing of a new wire, then an obstacle resolution portion of global routing is used to resolve the obstacle conflict and/or provide additional space in the integrated circuit layout to route the new wires. Obstacle resolution includes, without limitation, moving or changing layout geometry, changing or add hint polygons, changing the routing strategy by changing the bias direction and/or adjusting straying limits, inserting one or more layer changes, instructing the detailed router to backup and insert a bend, ripping-up and rerouting one or more wires, or routing the wire from the destination connection point. Also, a tight routing approach may be employed to accommodate constructing routing paths in tight layout areas. Object specific design rule checks are employed to increase routing flexibility optimize routing performance. “On-the-fly” design rule checks are performed on portions of routing paths as the routing paths are being constructed.
Owner:CHAPMAN DAVID C

Acoustic condition sensor employing a plurality of mutually non-orthogonal waves

A touch sensor comprising an acoustic wave transmissive medium having a surface; a plurality of acoustic wave path forming systems, each generating a set of incrementally varying paths through said transmissive medium; and a receiver, receiving signals representing said sets of waves, a portion of each set overlapping temporally or physically by propagating in said transmissive medium along axes which are not orthogonal. The waves may also be of differing wave modes. The receiver system may include a phase, waveform or amplitude sensitive system. Reflective arrays are associated with said medium situated along a path, said path not being a linear segment parallel to a coordinate axis of a substrate in a Cartesian space, a segment parallel to an axial axis or perpendicular to a radial axis of a substrate in a cylindrical space, nor parallel and adjacent to a side of a rectangular region of a small solid angle section of a sphere; situated along a path substantially not corresponding to a desired coordinate axis of a touch position output signal; situated along a path substantially non-parallel to an edge of said medium; has a spacing of elements in said array which differs, over at least one portion thereof, from an integral multiple of a wavelength of an incident acoustic wave; has elements in said array which are non-parallel; has an angle of acceptance of acoustic waves which varies over regions of said array; and/or coherently scatter at least two distinguishable acoustic waves which are received by said receiving system.
Owner:ELO TOUCH SOLUTIONS INC

Novel Karaoke and Multi-Channel Data Recording / Transmission Techniques via Wavefront Multiplexing and Demultiplexing

An advanced channel storage and retrieving system is achieved that is capable of simultaneously transporting multiple-stream data concurrently, with encryptions and error detection and limited correction capability using wavefront (WF) multiplexing (muxing) at the pre-processing and WF demultiplexing (de-muxing) in the post-processing. The WF muxing and demuxing processing can be applied for multiple signal streams with similar contents and format such as cable TV delivery systems or multiple signal streams with very distinct contents and format such as Karaoke multimedia systems. The stored or transported data are preprocessed by a WF muxing processor and are in the formats of multiple sub-channels. Signals in each sub-channel are results of unique linear combination of all the input signals streams. Conversely, an input signal stream is replicated and appears on all the sub-channels. Furthermore the replicated streams in various sub-channels are “linked” together by a unique phase weighting vector, which is called “wavefront” or WF. Various input signal streams will feature different WFs among their replicated signal streams in the sub-channels. The WF muxing processing is capable to generating a set of orthogonal WFs, and the WF demuxing processing is capable of reconstituting the input signal streams based on the retrieved sub-channel data only if the orthogonal characteristics of a set of WFs are preserved. Without the orthogonality among the WF, the signals in sub-channels are mixed and become effectively pseudo random noise. Therefore, an electronic locking mechanism in the preprocessing is implemented to make the WFs un-orthogonal among one another. Similarly, an electronic un-locking mechanism in the post-processing is implemented to restore the orthogonal characteristics among various WFs embedded in the sub-channel signals. Some of the phenomena due to the selected locking mechanisms are reproducible in nature, such as wave propagating effects, and other are distinctively man-made; such as switching sub-channel sequences. There are other conventional encryption techniques using public and private keys which can be applied in conjunction with the WF muxing and de-muxing processor, converting plain data streams into ciphered data streams which can be decoded back into the original plain data streams. An encryption algorithm along with a key is used in the encryption and decryption of data. As to the optional parallel to serial and serial to parallel conversions in the pre and post processing, respectively, we assume that transmissions with single carrier are more efficient than those with multiple carriers. We also assume single channel recording is more cost effective than multiple channel recording. However, there are occasions that continuous spectrum is hard to come-by. We may use fragmented spectrum for transmissions. There are techniques to convert wideband waveforms using continuous spectra into multiple fragmented sub-channels distributed on non-continuous frequency slots. Under these conditions we may replace the parallel to serial conversion processing by a frequency mapping processor.
Owner:SPATIAL DIGITAL SYST
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products