Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

152 results about "Genetic code" patented technology

The genetic code is the set of rules used by living cells to translate information encoded within genetic material (DNA or mRNA sequences) into proteins. Translation is accomplished by the ribosome, which links amino acids in an order specified by messenger RNA (mRNA), using transfer RNA (tRNA) molecules to carry amino acids and to read the mRNA three nucleotides at a time. The genetic code is highly similar among all organisms and can be expressed in a simple table with 64 entries.

Systems and methods for phase measurements

Preferred embodiments of the present invention are directed to systems for phase measurement which address the problem of phase noise using combinations of a number of strategies including, but not limited to, common-path interferometry, phase referencing, active stabilization and differential measurement. Embodiment are directed to optical devices for imaging small biological objects with light. These embodiments can be applied to the fields of, for example, cellular physiology and neuroscience. These preferred embodiments are based on principles of phase measurements and imaging technologies. The scientific motivation for using phase measurements and imaging technologies is derived from, for example, cellular biology at the sub-micron level which can include, without limitation, imaging origins of dysplasia, cellular communication, neuronal transmission and implementation of the genetic code. The structure and dynamics of sub-cellular constituents cannot be currently studied in their native state using the existing methods and technologies including, for example, x-ray and neutron scattering. In contrast, light based techniques with nanometer resolution enable the cellular machinery to be studied in its native state. Thus, preferred embodiments of the present invention include systems based on principles of interferometry and/or phase measurements and are used to study cellular physiology. These systems include principles of low coherence interferometry (LCI) using optical interferometers to measure phase, or light scattering spectroscopy (LSS) wherein interference within the cellular components themselves is used, or in the alternative the principles of LCI and LSS can be combined to result in systems of the present invention.
Owner:MASSACHUSETTS INST OF TECH

Systems and methods for phase measurements

Preferred embodiments of the present invention are directed to systems for phase measurement which address the problem of phase noise using combinations of a number of strategies including, but not limited to, common-path interferometry, phase referencing, active stabilization and differential measurement. Embodiment are directed to optical devices for imaging small biological objects with light. These embodiments can be applied to the fields of, for example, cellular physiology and neuroscience. These preferred embodiments are based on principles of phase measurements and imaging technologies. The scientific motivation for using phase measurements and imaging technologies is derived from, for example, cellular biology at the sub-micron level which can include, without limitation, imaging origins of dysplasia, cellular communication, neuronal transmission and implementation of the genetic code. The structure and dynamics of sub-cellular constituents cannot be currently studied in their native state using the existing methods and technologies including, for example, x-ray and neutron scattering. In contrast, light based techniques with nanometer resolution enable the cellular machinery to be studied in its native state. Thus, preferred embodiments of the present invention include systems based on principles of interferometry and/or phase measurements and are used to study cellular physiology. These systems include principles of low coherence interferometry (LCI) using optical interferometers to measure phase, or light scattering spectroscopy (LSS) wherein interference within the cellular components themselves is used, or in the alternative the principles of LCI and LSS can be combined to result in systems of the present invention.
Owner:MASSACHUSETTS INST OF TECH

Systems and methods for phase measurements

Preferred embodiments of the present invention are directed to systems for phase measurement which address the problem of phase noise using combinations of a number of strategies including, but not limited to, common-path interferometry, phase referencing, active stabilization and differential measurement. Embodiment are directed to optical devices for imaging small biological objects with light. These embodiments can be applied to the fields of, for example, cellular physiology and neuroscience. These preferred embodiments are based on principles of phase measurements and imaging technologies. The scientific motivation for using phase measurements and imaging technologies is derived from, for example, cellular biology at the sub-micron level which can include, without limitation, imaging origins of dysplasia, cellular communication, neuronal transmission and implementation of the genetic code. The structure and dynamics of sub-cellular constituents cannot be currently studied in their native state using the existing methods and technologies including, for example, x-ray and neutron scattering. In contrast, light based techniques with nanometer resolution enable the cellular machinery to be studied in its native state. Thus, preferred embodiments of the present invention include systems based on principles of interferometry and / or phase measurements and are used to study cellular physiology. These systems include principles of low coherence interferometry (LCI) using optical interferometers to measure phase, or light scattering spectroscopy (LSS) wherein interference within the cellular components themselves is used, or in the alternative the principles of LCI and LSS can be combined to result in systems of the present invention.
Owner:MASSACHUSETTS INST OF TECH

Systems and methods for phase measurements

Preferred embodiments of the present invention are directed to systems for phase measurement which address the problem of phase noise using combinations of a number of strategies including, but not limited to, common-path interferometry, phase referencing, active stabilization and differential measurement. Embodiment are directed to optical devices for imaging small biological objects with light. These embodiments can be applied to the fields of, for example, cellular physiology and neuroscience. These preferred embodiments are based on principles of phase measurements and imaging technologies. The scientific motivation for using phase measurements and imaging technologies is derived from, for example, cellular biology at the sub-micron level which can include, without limitation, imaging origins of dysplasia, cellular communication, neuronal transmission and implementation of the genetic code. The structure and dynamics of sub-cellular constituents cannot be currently studied in their native state using the existing methods and technologies including, for example, x-ray and neutron scattering. In contrast, light based techniques with nanometer resolution enable the cellular machinery to be studied in its native state. Thus, preferred embodiments of the present invention include systems based on principles of interferometry and / or phase measurements and are used to study cellular physiology. These systems include principles of low coherence interferometry (LCI) using optical interferometers to measure phase, or light scattering spectroscopy (LSS) wherein interference within the cellular components themselves is used, or in the alternative the principles of LCI and LSS can be combined to result in systems of the present invention.
Owner:MASSACHUSETTS INST OF TECH

System and method for measuring phase

Preferred embodiments of the present invention are directed to systems for phase measurement which address the problem of phase noise using combinations of a number of strategies including, but not limited to, common-path interferometry, phase referencing, active stabilization and differential measurement. Embodiment are directed to optical devices for imaging small biological objects with light. These embodiments can be applied to the fields of, for example, cellular physiology and neuroscience. These preferred embodiments are based on principles of phase measurements and imaging technologies. The scientific motivation for using phase measurements and imaging technologies is derived from, for example, cellular biology at the sub-micron level which can include, without limitation, imaging origins of dysplasia, cellular communication, neuronal transmission and implementation of the genetic code. The structure and dynamics of sub-cellular constituents cannot be currently studied in their native state using the existing methods and technologies including, for example, x-ray and neutron scattering. In contrast, light based techniques with nanometer resolution enable the cellular machinery to be studied in its native state. Thus, preferred embodiments of the present invention include systems based on principles of interferometry and/or phase measurements and are used to study cellular physiology. These systems include principles of low coherence interferometry (LCI) using optical interferometers to measure phase, or light scattering spectroscopy (LSS) wherein interference within the cellular components themselves is used, or in the alternative the principles of LCI and LSS can be combined to result in systems of the present invention.
Owner:MASSACHUSETTS INST OF TECH

Lipolytic enzyme: uses thereof in the food industry

The invention encompasses the use of a lipolytic enzyme obtainable from one of the following genera: Streptomyces, Corynebacterium and Thermobifida in various methods and uses, wherein said lipolytic enzyme is capable of hydrolysing a glycolipid or a phospholipid or transferring an acyl group from a glycolipid or phospholipids to an acyl acceptor. Preferably, the lipolytic enzyme for use in these methods and uses comprises an amino acid sequence as shown in any one of SEQ ID NOs: 4, 5, 7, 8, 12, 14 or 16 or an amino acid sequence having at least 70% identity therewith or comprises a nucleotide sequence shown as SEQ ID NO: 3, 6, 9, 13, 15 or 17 or a nucleotide sequence which has at least 70% identity therewith. The present invention also relates to a lipolytic enzyme capable of hydrolysing at least a galactolipid or capable of transferring an acyl group from a galactolipid to one or more acyl acceptor substrates, wherein the enzyme is obtainable from Streptomyces species and includes a lipolytic enzyme comprising an amino acid sequence as shown in SEQ ID NO: 4 or an amino acid sequence which has at least 60% identity thereto. The enzyme may be encoded by a nucleic acid selected from the group consisting of: a) a nucleic acid comprising a nucleotide sequence show in SEQ ID NO: 3; b) a nucleic acid which is related to the nucleotide sequence of SEQ ID NO: 3 by the degeneration of the genetic code; and c) a nucleic acid comprising a nucleotide sequence which has at least 70% identity with the nucleotide sequence shown in SEQ ID NO: 3.
Owner:DUPONT NUTRITION BIOSCIENCES APS

Mechanism kinematic link isomorphism identification method based on immunity genetic hybrid algorithm

InactiveCN103324983AOvercome the disadvantage of easy convergence to local optimumDiversity guaranteedGenetic modelsSpecial data processing applicationsAlgorithmGenetic code
The inventiondiscloses a mechanism kinematic link isomorphism identification method based on the immunity genetic hybrid algorithm. The mechanism kinematic link isomorphism identification method includes the steps of (1) forming a topological graph corresponding to a mechanism kinematic link according to the structural mode of the mechanism kinematic link, (2) setting a genetic code of an adjacent matrix according to the topological graph, (3) taking adjacent matrixes, to be determined, of the two topological graphs, determining an objective function, (4) generating the initial antibody population at random, calculating adaptability of each individual, sequencing the individuals according to the adaptability, (5) taking the optimal saving strategy on the initial antibody population, (6) calculating the concentration of each individual, enabling the each individual concentration to be equal to a value obtained by dividing the total individual number in a population by the adjacent individual sum, (7) taking the optimal interaction strategy on the antibody population obtained in the step (5), (8) conducting the mutation operation, adopting the inverse operator to achieve the mutation operation, (9) combining the local search operator and the genetic algorithm, (10) forming the immunity genetic hybrid algorithm, and conducting the isomorphism identification operation on the mechanism kinematic link. The mechanism kinematic link isomorphism identification method overcomes the shortcoming that the immunity genetic hybrid algorithm can be easily restrained to local optimum.
Owner:JIANGSU UNIV

Morphological genome for design applications

This invention deals with an integrated morphological system, herein called a morphological genome (morph genome), for design applications. This is the genome that encodes all form and is similar in intent to the biological genome that encodes all living things by its genetic code. The morph genome comprises a finite set of morphological genes, each gene specifies a distinct group of morphological transformations, each group of transformations is defined by a group of independent topological, geometric or other parameters. The morph genes and their parameters are mapped within an integrated higher-dimensional framework, with each parameter being represented along a vector in higher-dimensional Euclidean space. Each distinct number associated with a parameter or a group of parameters is represented by a distinct point in this space and is referenced by the higher-dimensional Cartesian co-ordinates of that point. This space uses a combination of discrete and continuous values for these parameters. The specific co-ordinates of any point in the space represent a genetic code for the specific form being mapped at that point. The entire space is a map of the morph genome and encodes all possible morphologies. The morph genome can be used as a design tool to generate known and new forms for applications in all fields of design including architecture, product design, environments and spaces, building or engineering structures, graphics, art, sculpture, technological devices, etc. The underlying method for the model for the morph genome applies to other fields of knowledge for systematically organizing and creating new concepts, structures, designs, information and taxonomies. The morph genome can also provide a basis for an integrated, interactive modeling environment for computers. It is a pedagogical tool for discovery and invention as well. Other applications include a graphic code for encryption as an alternative to numeric codes, and a system for representing numbers as integers, rational numbers and real numbers.
Owner:LALVANI HARESH

Preparation method for soluble truncated human tumor necrosis factor-related apoptosis inducing ligand (TRAIL) active protein

The invention provides a preparation method for a soluble truncated human tumor necrosis factor-related apoptosis inducing ligand (TRAIL) active protein, comprising the following steps of: (A) designing and synthetizing an oligomerization deoxyribonucleic acid (DNA) single-stranded segment according to the amino acid sequence of the human TRAIL protein issued by a Genebank by the preference of a bacterium genetic code; (B) synthetizing a complete double stranded DNA by three-time polymerase chain reaction (PCR); (C) carrying out amplification by utilizing a T-carrier, and inserting the amplified double stranded DNA segment into an expression carrier and screening a positive transformant; (D) expressing the truncated human TRAIL protein in escherichia coli at low temperature; (E) purifying the protein by using a three-step method; and (F) determining the truncated TRAIL protein. The invention realizes that the truncated human TRAIL protein is efficiently expressed in an escherichia coli cell and a purification preparation technique thereof and overcomes the problem that an infusible inclusion body is easy to form in the prior art. The method has the advantages of simple operation, short fermentation time and easy purification, and moreover, the protein is ensured not to have any modification, and the protein reaches electrophoretically pure. The invention can be directly used for the research work of biochemistry and molecular biology and the oncology and the preclinical stage of tumor treatment or the development of clinical drugs.
Owner:HUBEI UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products