Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

92 results about "Active stabilization" patented technology

Systems and methods for phase measurements

Preferred embodiments of the present invention are directed to systems for phase measurement which address the problem of phase noise using combinations of a number of strategies including, but not limited to, common-path interferometry, phase referencing, active stabilization and differential measurement. Embodiment are directed to optical devices for imaging small biological objects with light. These embodiments can be applied to the fields of, for example, cellular physiology and neuroscience. These preferred embodiments are based on principles of phase measurements and imaging technologies. The scientific motivation for using phase measurements and imaging technologies is derived from, for example, cellular biology at the sub-micron level which can include, without limitation, imaging origins of dysplasia, cellular communication, neuronal transmission and implementation of the genetic code. The structure and dynamics of sub-cellular constituents cannot be currently studied in their native state using the existing methods and technologies including, for example, x-ray and neutron scattering. In contrast, light based techniques with nanometer resolution enable the cellular machinery to be studied in its native state. Thus, preferred embodiments of the present invention include systems based on principles of interferometry and / or phase measurements and are used to study cellular physiology. These systems include principles of low coherence interferometry (LCI) using optical interferometers to measure phase, or light scattering spectroscopy (LSS) wherein interference within the cellular components themselves is used, or in the alternative the principles of LCI and LSS can be combined to result in systems of the present invention.
Owner:MASSACHUSETTS INST OF TECH

Systems and methods for phase measurements

Preferred embodiments of the present invention are directed to systems for phase measurement which address the problem of phase noise using combinations of a number of strategies including, but not limited to, common-path interferometry, phase referencing, active stabilization and differential measurement. Embodiment are directed to optical devices for imaging small biological objects with light. These embodiments can be applied to the fields of, for example, cellular physiology and neuroscience. These preferred embodiments are based on principles of phase measurements and imaging technologies. The scientific motivation for using phase measurements and imaging technologies is derived from, for example, cellular biology at the sub-micron level which can include, without limitation, imaging origins of dysplasia, cellular communication, neuronal transmission and implementation of the genetic code. The structure and dynamics of sub-cellular constituents cannot be currently studied in their native state using the existing methods and technologies including, for example, x-ray and neutron scattering. In contrast, light based techniques with nanometer resolution enable the cellular machinery to be studied in its native state. Thus, preferred embodiments of the present invention include systems based on principles of interferometry and / or phase measurements and are used to study cellular physiology. These systems include principles of low coherence interferometry (LCI) using optical interferometers to measure phase, or light scattering spectroscopy (LSS) wherein interference within the cellular components themselves is used, or in the alternative the principles of LCI and LSS can be combined to result in systems of the present invention.
Owner:MASSACHUSETTS INST OF TECH

Systems and methods for phase measurements

Preferred embodiments of the present invention are directed to systems for phase measurement which address the problem of phase noise using combinations of a number of strategies including, but not limited to, common-path interferometry, phase referencing, active stabilization and differential measurement. Embodiment are directed to optical devices for imaging small biological objects with light. These embodiments can be applied to the fields of, for example, cellular physiology and neuroscience. These preferred embodiments are based on principles of phase measurements and imaging technologies. The scientific motivation for using phase measurements and imaging technologies is derived from, for example, cellular biology at the sub-micron level which can include, without limitation, imaging origins of dysplasia, cellular communication, neuronal transmission and implementation of the genetic code. The structure and dynamics of sub-cellular constituents cannot be currently studied in their native state using the existing methods and technologies including, for example, x-ray and neutron scattering. In contrast, light based techniques with nanometer resolution enable the cellular machinery to be studied in its native state. Thus, preferred embodiments of the present invention include systems based on principles of interferometry and / or phase measurements and are used to study cellular physiology. These systems include principles of low coherence interferometry (LCI) using optical interferometers to measure phase, or light scattering spectroscopy (LSS) wherein interference within the cellular components themselves is used, or in the alternative the principles of LCI and LSS can be combined to result in systems of the present invention.
Owner:MASSACHUSETTS INST OF TECH

Single-frequency Brillouin fiber ring laser with extremely narrow linewidth

A single-frequency Brillouin fiber ring laser with extremely narrow linewidth comprises a single-frequency narrow-linewidth rapid-tunable pump laser, a temperature-controlled acoustically-damped package for Brillouin fiber ring laser cavity, and an auto-tracking feedback electronic loop with novel configuration for active stabilization. The Pound-Drever-Hall frequency-locking technique is employed to keep pump laser frequency in resonance with one of the Brillouin fiber ring cavity modes. Instead of changing cavity length of Brillouin fiber ring laser, the pump laser frequency is rapidly tuned in the auto-tracking feedback electronic loop. This enables extremely narrow linewidth radiation emitted from a Brillouin fiber ring laser without stretching the fiber ring. Dual-wavelength actively stabilized Brillouin fiber ring laser may be generated from a single ring cavity by polarization-combining or wavelength-combining two pump laser beams and using two independent feedback loops to the two operation wavelengths.
Owner:NP PHOTONICS A CORP OF DELAWARE

Systems and methods for phase measurements

Preferred embodiments of the present invention are directed to systems for phase measurement which address the problem of phase noise using combinations of a number of strategies including, but not limited to, common-path interferometry, phase referencing, active stabilization and differential measurement. Embodiment are directed to optical devices for imaging small biological objects with light. These embodiments can be applied to the fields of, for example, cellular physiology and neuroscience. These preferred embodiments are based on principles of phase measurements and imaging technologies. The scientific motivation for using phase measurements and imaging technologies is derived from, for example, cellular biology at the sub-micron level which can include, without limitation, imaging origins of dysplasia, cellular communication, neuronal transmission and implementation of the genetic code. The structure and dynamics of sub-cellular constituents cannot be currently studied in their native state using the existing methods and technologies including, for example, x-ray and neutron scattering. In contrast, light based techniques with nanometer resolution enable the cellular machinery to be studied in its native state. Thus, preferred embodiments of the present invention include systems based on principles of interferometry and / or phase measurements and are used to study cellular physiology. These systems include principles of low coherence interferometry (LCI) using optical interferometers to measure phase, or light scattering spectroscopy (LSS) wherein interference within the cellular components themselves is used, or in the alternative the principles of LCI and LSS can be combined to result in systems of the present invention.
Owner:MASSACHUSETTS INST OF TECH

Actively stabilized payload support apparatus and methods

A payload stabilizer suitable for use with video camera payloads. The stabilizer has a feedback system providing supplemental torques to the payload through a gimbal while remaining responsive to direct operator control.
Owner:WAGNER STEVEN D +1

System and method for measuring phase

Preferred embodiments of the present invention are directed to systems for phase measurement which address the problem of phase noise using combinations of a number of strategies including, but not limited to, common-path interferometry, phase referencing, active stabilization and differential measurement. Embodiment are directed to optical devices for imaging small biological objects with light. These embodiments can be applied to the fields of, for example, cellular physiology and neuroscience. These preferred embodiments are based on principles of phase measurements and imaging technologies. The scientific motivation for using phase measurements and imaging technologies is derived from, for example, cellular biology at the sub-micron level which can include, without limitation, imaging origins of dysplasia, cellular communication, neuronal transmission and implementation of the genetic code. The structure and dynamics of sub-cellular constituents cannot be currently studied in their native state using the existing methods and technologies including, for example, x-ray and neutron scattering. In contrast, light based techniques with nanometer resolution enable the cellular machinery to be studied in its native state. Thus, preferred embodiments of the present invention include systems based on principles of interferometry and / or phase measurements and are used to study cellular physiology. These systems include principles of low coherence interferometry (LCI) using optical interferometers to measure phase, or light scattering spectroscopy (LSS) wherein interference within the cellular components themselves is used, or in the alternative the principles of LCI and LSS can be combined to result in systems of the present invention.
Owner:MASSACHUSETTS INST OF TECH

Actively stabilized payload support apparatus and methods

A payload stabilizer and methods for stabilizing a payload suitable for use with video camera payloads. The stabilizer has a feedback system providing supplemental torques to the payload through a gimbal.
Owner:WAGNER STEVEN D +2

Two-way QKD system with active compensation

A two-way actively stabilized QKD system that utilizes control signals and quantum signals is disclosed. Because the quantum signals do not traverse the same optical path through the system, signal collisions in the phase modulator are avoided. This allows the system to have a higher transmission rate than a two-way system in which the quantum signals traverse the same optical path. Also, the active stabilization process, which is based on maintaining a fixed relationship between an intensity ratio of interfered control signals, is greatly simplified by having the interferometer loops located all in one QKD station.
Owner:MAGIQ TECH INC

Active stability wheel chair based on positive angle sensors

A power wheelchair incorporates inclinometers to measure angle of pitch and angle of roll. An inclinometer signal is used as an input to a controller. The controller alters drive parameters, such as maximum acceleration, deceleration, and minimum turning radius according to the pitch angle and roll angle of the terrain upon which the wheelchair is operated.
Owner:SUNRISE MEDICAL HHC INC

Tethered hovering platform

The design and refinement of a tethered hovering platform into a feasible working system is presented. To determine a starting point for the design, a detailed historical search was conducted to find the history and the current state of such technology. Real world current needs are analyzed to produce a mission specification and to drive the preliminary vehicle design. Analysis of environmental conditions and decisions about an initial payload package are made in conjunction with motor and propeller sizing. Initial concept testing to discover feasibility and operational issues was performed; from this, instability issues were discovered. Analyzing these instability issues using known rotorcraft and momentum effects, in conjunction with flight testing, yields possible solutions to the problem. The use of constrained layer dampers as a means of passive stabilization is addressed and suggested as the preferred solution. Testing of passive constrained layer damping verifies the stability of the solution. The system components and manufacturing cost is presented in comparison to current systems using active stabilization
Owner:UNIVERSITY OF KANSAS

Unmanned aerial vehicle vehicle-mounted automatic airport landing equipment and control method thereof

The invention relates to the technical field of unmanned aerial vehicles, specifically to unmanned aerial vehicle vehicle-mounted automatic airport landing equipment. The unmanned aerial vehicle vehicle-mounted automatic airport landing equipment comprises a GPS positioning system is characterized by comprising a horizontally arranged takeoff and landing platform, a centering module, a clamping module, an active stabilizing module, a supporting platform, a fixed bottom plate, a battery changing module, a shell and a landing beacon; and a control method of the unmanned aerial vehicle vehicle-mounted automatic airport landing equipment comprises the steps of position identification, position keeping, road condition judging, active stabilizing, accurate synchronizing, landing, centering and fixing. Compared with the prior art, the unmanned aerial vehicle vehicle-mounted automatic airport landing equipment has the advantages that the landing stability of an unmanned aerial vehicle is improved, and functions, such as landing, fixing and transporting of the unmanned aerial vehicle on a vehicle-mounted mobile airport, are realized.
Owner:上海复亚智能技术发展有限公司

Body-roll restraining system for vehicle

A body-roll restraining system with high utility equipped with active stabilizer devices on a front-wheel side and a rear-wheel side of the vehicle and configured to generate roll restraining forces whose directions are opposite to each other, and maybe configured such that the roll restraining forces are changeable owing to an operation of an actuator, The system having a road-surface-unevenness-dependent-roll restraining control. The above-indicated road-surface-unevenness-dependent-roll restraining control is executable in addition to a control which was conducted in conventional stabilizer devices to restrain the roll that arises from turning of the vehicle, and thus the ride comfort of the vehicle is enhanced.
Owner:TOYOTA JIDOSHA KK

Narrow bandpass filter assemblies for solar telescopes

The invention relates to the combination of lower transmittance etalons with higher transmittance filters, including use of a single circular polarizer with high efficiency and optical performance for its filtered polarization, to achieve necessary throughput of a narrow bandpass region. The lower transmittance etalons can be achieved by using lower transmittance solid-state etalon materials, or by control of the coatings on the etalon. Alternate configurations are described that reduce the optical assembly's footprint, and / or include additional filters to remove stray light. An innovative option to heat the etalon directly is disclosed to actively stabilize and maintain the etalon's bandpass.
Owner:HRUSKA CURTIS ROSS

System and method for phase-readout and active stabilization of optical interferometers

A system and method for phase-readout / control and active stabilization on arbitrary interferometric phase in the optical interferometer platform is disclosed. The method makes use of a bi-colored polarization-multiplexed reference laser scheme. The disclosed scheme is based on two phase-locked reference signals with different frequencies that together remove the phase ambiguity. The two signals are polarization-multiplexed (either in free-space or optical fiber implementations) to enable easy separation and combining of these two signals through the use of polarization beam-splitters. The disclosed scheme provides a one-to-one map between phase and feedback signal levels, and enables phase-readout and stabilization even when one of the feedback-signals is at a maximum / minimum.
Owner:INSTITUT NATIONAL DE LA RECHERCHE SCIENTIFIQUE

Actively stabilized payload support apparatus and methods

A payload stabilizer and methods for stabilizing a payload suitable for use with video camera payloads. The stabilizer has a feedback system providing supplemental torques to the payload through a gimbal.
Owner:WAGNER STEVEN D +2

Counter-balanced suspended image stabilization system

Embodiments are described for a stabilization system configured, in some embodiments, for stabilizing image capture from an aerial vehicle (e.g., a UAV). According to some embodiments, the stabilization systems employs both active and passive stabilization means. A passive stabilization assembly includes a counter-balanced suspension system that includes an elongated arm that extends into and is coupled to the body of a vehicle. The counter-balanced suspension system passively stabilizes a mounted device such as an image capture device to counter motion of the UAV while in use. In some embodiment the counter-balanced suspension system passively stabilizes a mounted image capture assembly that includes active stabilization means (e.g., a motorized gimbal and / or electronic image stabilization). In some embodiments, the active and passive stabilization means operate together to effectively stabilize a mounted image capture device to counter a wide range of motion characteristics.
Owner:SKYDIO

Unstable rowing simulator

Lever-type rowing machine, whose main rigging dimensions meet the corresponding parameters of sweep rowing or sculling boat is mounted to the base frame by using front and rear elastic suspension so that the simulator makes it possible to rotate (tilt) about its transverse and longitudinal axes and move vertically, thus making it possible to simulate the boat swings on the transverse and longitudinal axes and movement in the vertical direction. In addition, the simulator has passive and active stabilization systems, enabling the athlete to maintain a balance, and stiffness of its front and rear suspension and stabilizer system can be adjusted depending on the weight and balancing ability of user. There is also a possibility to constraint the suspension thus ensuring full stability of the simulator and exercise regime, corresponding to the exercising on common rowing machines.
Owner:KAUNO TECHNOLOGIJOS UNIVTAS

Passive and active stability systems for ballistically launched multirotors

A ballistically launched foldable multirotor vehicle has a central body frame. A battery is located in an upper vertical location of the vehicle and positions a center of mass of the vehicle to provide aerodynamic stability during a launch. Fins are attached to the central body frame such that aerodynamic forces on the fins shift an aerodynamic center (AC) of the vehicle downward below the center of mass of the vehicle. Three or more foldable arms are attached to the central body frame via a hinge and exist in two states—a closed state where the foldable arms are parallel to a central body axis, and an open state (after launch) where the foldable arms extend radially outward perpendicular to the central body axis. Rotors mounted to each foldable arm are controlled by a motor to enable flight.
Owner:CALIFORNIA INST OF TECH

Actively stabilized, single input beam, interference lithography system and method

An interference lithography system is described that is capable of exposing high resolution patterns in photosensitive media and employing yield increasing active stabilization techniques needed in production environments. The inventive device utilizes a division-of-wavefront interference lithography configuration which divides a single large field size optical beam using one or more mirrors, and is actively stabilized with a subsystem employing; a phase modulator operating on each divided wavefront section; a novel feedback apparatus for observing the relative phase shifts between interfering wavefront sections; and a control system for holding the relative phase shifts constant. The present invention also includes; a method for shaping the illumination beam's intensity distribution for more efficient power utilization and greater feature size uniformity; a horizontal substrate loading configuration compatible with robotic handling; an automated pattern pitch calibration for simple, flexible system reconfiguration; a compact clean-room compatible superstructure for increased passive stability in high vibration manufacturing environments; and a method for optimizing the polarization state of the interfering beam sections in a multiple mirror system.
Owner:AZTEC SYST

Control system and method of electric active stabilizing rod

The invention discloses a control system and method of an electric active stabilizing rod. The control system is characterized by comprising a control unit, a gyroscope sensor, a rotor position sensor and a current sensor; the control unit comprises an attitude detection circuit, a motor rotor position signal processing circuit, a current sampling circuit, a motor vector drive and overcurrent protection circuit and a master control chip. The sidesway angle of a vehicle can be controlled in real time, and therefore during vehicle high-speed steering, the driving safety and taking comfort of the vehicle can be improved.
Owner:INTELLIGENT MFG INST OF HFUT

Fault code storage management method for automobile active stabilization control system

The invention belongs to a method for storing and managing the fault codes by an automotive active stability control system in the field of vehicle driving safety management system. The automotive active stability control system uses an automotive electronic stability program (ESP) for storing and managing the fault codes; the automotive ESP fault code storage and management is a way that an ESP fault diagnosis system defines, stores and reads the fault codes; firstly the ESP defines the fault codes according to the fault type, leads each fault code to be corresponding to each byte address in a designated storage unit one by one; the storage of the fault codes is carried out in a mode of changing the mark bit of a corresponding storage byte thereof; the fault diagnosis results are stored in chronological sequence from the high bit to the low bit of the corresponding bytes in sequence, thereby ensuring the characteristics of non-volatility, historicity, simple algorithm, high efficiency, and short operating cycle for the fault diagnosis result data storage of the system, guaranteeing the vehicle driving stability and greatly improving the driving safety of the vehicle.
Owner:CHINA AGRI UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Eureka Blog
Learn More
PatSnap group products