Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1322 results about "Paraboloid" patented technology

In geometry, a paraboloid is a quadric surface that has exactly one axis of symmetry and no center of symmetry. The term "paraboloid" is derived from parabola, which refers to a conic section that has a similar property of symmetry. Every plane section of a paraboloid by a plane parallel to the axis of symmetry is a parabola. The paraboloid is hyperbolic if every other plane section is either a hyperbola, or two crossing lines (in the case of a section by a tangent plane).

Wide-angle irradiation feed source device with parasitic matched media and microwave antenna

The invention relates to a wide-angle irradiation feed source device with parasitic matched media and a microwave antenna. The wide-angle irradiation feed source device with the parasitic matched media comprises components such as guided wave media, the parasitic matched media, metal reflecting surfaces, reflective matching steps and the like. The parasitic matched media are arranged on the lateral surfaces of the guided wave media. The metal reflecting surfaces are formed on the upper surfaces of the guided wave media. The reflective matching steps are positioned at the bottom ends of the metal reflecting surfaces. Primary reflecting regions are positioned between the guided wave media and the parasitic matched media. Secondary reflecting regions are positioned outside the parasitic matched media, and are parallel to the primary reflecting regions. One end of each circular waveguide is inserted between the corresponding guided wave medium and the corresponding parasitic matched medium. The microwave antenna comprises a paraboloid and the wide-angle irradiation feed source device with the parasitic matched media. One end of the wide-angle irradiation feed source device with the parasitic matched media is fixed at the top end of the paraboloid. The feed source device provided by the invention is in fit with the short-focus paraboloid to realize the high-performance and low-profile microwave antenna, and the manufacturing cost is effectively reduced.
Owner:赵铭

Space concentrator for advanced solar cells

A solar concentrator is provided that comprises two stages. The first stage comprises either a trough-shaped concentrator cusp unit having two major opposed sides joined by two ends. The inner surfaces of the first stage concentrator are mirrored. Further, the ends have two flat, angled surfaces, while the two sides have a Bezier-generated cylindrical shape that approximate parabolic surfaces followed by a straight section. The second stage comprises a bi-axial gradient refractive index (GRIN) element, in which two gradient refractive index materials, each having a high index surface and a low index surface, are joined together along their high index surfaces. The two ends of the bi-axial element are flat, while the two sides also have a Bezier-generated cylindrical shape that approximate parabolic surfaces followed by a straight section. The top surface of the bi-axial element is provided with a cylindrical surface, while the bottom, or exit, surface is ground flat. The high index boundary is parallel to the side surfaces of the first stage unit. A solar cell is bonded to the flat exit surface of the second stage of the concentrator of the present invention. An array of such concentrators and solar cells, in which the solar cells are electrically interconnected, may then be deployed for converting solar energy into useful electrical energy. The 2-D / 3-D concentrator evidences much lower mass than prior art concentrators. Further, as the array, or panel, of solar cells wobbles in space, the concentrator will continue to operate, even at lower efficiencies, due to the larger acceptance angle. Concentration ratios on the order of 50x are realized with the present concentrator. However, design studies allow concentration ratios in excess of 300x when used with 3-D versions of the same concept. The second stage can comprise mirrored surfaces. Or, the first stage can comprise a conical section and the second stage a radial GRIN element.
Owner:ORTABASI UGUR

Space concentrator for advanced solar cells

A solar concentrator is provided that comprises two stages. The first stage comprises either a trough-shaped concentrator cusp unit having two major opposed sides joined by two ends. The inner surfaces of the first stage concentrator are mirrored. Further, the ends have two flat, angled surfaces, while the two sides have a Bezier-generated cylindrical shape that approximate parabolic surfaces followed by a straight section. The second stage comprises a bi-axial gradient refractive index (GRIN) element, in which two gradient refractive index materials, each having a high index surface and a low index surface, are joined together along their high index surfaces. The two ends of the bi-axial element are flat, while the two sides also have a Bezier-generated cylindrical shape that approximate parabolic surfaces followed by a straight section. The top surface of the bi-axial element is provided with a cylindrical surface, while the bottom, or exit, surface is ground flat. The high index boundary is parallel to the side surfaces of the first stage unit. A solar cell is bonded to the flat exit surface of the second stage of the concentrator of the present invention. An array of such concentrators and solar cells, in which the solar cells are electrically interconnected, may then be deployed for converting solar energy into useful electrical energy. The 2-D/3-D concentrator evidences much lower mass than prior art concentrators. Further, as the array, or panel, of solar cells wobbles in space, the concentrator will continue to operate, even at lower efficiencies, due to the larger acceptance angle. Concentration ratios on the order of 50x are realized with the present concentrator. However, design studies allow concentration ratios in excess of 300x when used with 3-D versions of the same concept. The second stage can comprise mirrored surfaces. Or, the first stage can comprise a conical section and the second stage a radial GRIN element.
Owner:ORTABASI UGUR

Solar energy and coal-burning unit combined thermal power generation system

The invention relates to a generating system, in particular to the heat generating system consisting of a solar heat collector and a coal-fired unit. The heat generating system adopts solar energy to take the place of the partial coal-fired heat energy of a coal-fired unit boiler. A condenser, an extraction pump, a low pressure heater, a deaerator, a water-feeding pump, a high pressure heater and the heat collector, a coal burning boiler and a steam turbine that are connected in parallel are connected in series. The steam turbine drives the generator and discharges gas into the condenser. Condensed water flows into a heater from the condenser to be heated up and pressurized, is deoxidized by the deaerator, then goes through the solar heat collector to be heated to be saturated vapor and goes into the coal burning boiler or directly goes into the coal burning boiler to become the steam with high temperature and high pressure. And then the steam goes into the steam turbine for applying work to drive the generator to generate electricity. The extracted steam of the steam turbine goes into each heater to finish thermodynamic cycle. The thermal efficiency of solar thermal power generation is improved, investment in the trough solar electrical energy generation of single paraboloid is reduced and the coal consumption of the coal-fired unit is decreased.
Owner:NORTH CHINA ELECTRIC POWER UNIV (BAODING)

Catadioptric light distribution system

A Catadioptric Light Distribution System is disclosed. The system collects and collimates the hemispherical pattern of light emitted by a Lambertian light emitting diode (LED) into a collimated beam directed essentially parallel to the optical axis of the LED. The system comprises a circular condensing lens having a center axis that is aligned with the optical axis of the LED and which is configured to receive an collimate a portion of the light from the LED defined by a central cone of light centered around the optical axis. A parabolic reflector having circular opening formed therethrough is centered on the center axis of the parabolic reflector and is positioned around the LED to receive and redirect the light which does not form the cone that impinges upon the condensing lens in a collimated annular beam in a direction away from the condensing lens. The light reflected and culminated by the parabolic reflector is directed onto a circular annular double bounce mirror which is configured and positioned to receive the annular beam from the parabolic reflector and reflect that beam of light 180° so that it is collimated in an annular beam which passes around the edge of the condensing lens. Thus, substantially all the light emitted by the LED is culminated into a beam of light that is substantially parallel to the optical axis of the LED by either the condensing lens or by the combination of the parabolic reflector and the double bounce mirror.
Owner:GM GLOBAL TECH OPERATIONS LLC

Fluorescence-like LED illumination unit and applications thereof

A fluorescence-like light emitting diode (LED) illumination unit is provided, which includes a radiator, an LED substrate fixed on the radiator, and multiple LED illuminants encapsulated on the LED substrate. A first surface of the radiator is in the shape of a paraboloid with reflective effect. A bar-shaped convex lens with radial converging effect is disposed in the space surrounded by the paraboloid. The bar-shaped convex lens is located in front of the multiple LED illuminants and radially converges part of light rays emitted by the multiple LED illuminants but axially diffuses them. The illumination unit completely solves the problems such as exposure of spotted light sources, small irradiation angle of a light path, beaded light spots of the LED light sources as the lamp illuminant, visual dizziness caused by multiple projections formed by irradiating an irradiated object with a multi-point light source, dazzling light rays, and the like in an existing LED illumination lamp. The illumination unit emits more uniform and soft light rays, with a higher brightness in an irradiated region and a light emitting mode which is basically not different from that of a conventional daylight lamp, and meets the long-term using habit and approval of people. Various applications of the fluorescence-like LED illumination unit are further provided.
Owner:上海开腾信号设备股份有限公司

Photovoltaic generator with a spherical imaging lens for use with a paraboloidal solar reflector

The invention is a generator for photovoltaic conversion of concentrated sunlight into electricity. A generator according to the invention incorporates a plurality of photovoltaic cells and is intended for operation near the focus of a large paraboloidal reflector pointed at the sun. Within the generator, the entering concentrated light is relayed by secondary optics to the cells arranged in a compact, concave array. The light is delivered to the cells at high concentration, consistent with high photovoltaic conversion efficiency and low cell cost per unit power output. Light enters the generator, preferably first through a sealing window, and passes through a field lens, preferably in the form of a full sphere or ball lens centered on the paraboloid focus. This lens forms a concentric, concave and wide-angle image of the primary reflector, where the intensity of the concentrated light is stabilized against changes in the position of concentrated light entering the generator. Receiving the stabilized light are flat photovoltaic cells made in different shapes and sizes and configured in a concave array corresponding to the concave image of a given primary reflector. Photovoltaic cells in a generator are also sized and interconnected so as to provide a single electrical output that remains high and stable, despite aberrations in the light delivered to the generator caused by, for example, mispointing or bending of the primary reflector. In some embodiments, the cells are set back from the image formed by the ball lens, and part of the light is reflected onto each cell small secondary reflectors in the form of mirrors set around its perimeter.
Owner:THE ARIZONA BOARD OF REGENTS ON BEHALF OF THE UNIV OF ARIZONA

Paraboloid trough type solar heat-collector auxiliary coal-burning boiler mixing heat power generation system

The invention belongs to the generating equipment scope and in particular relates to a mixed heat power generating system with a paraboloid groove type solar heat collector to assist a coal burning boiler. A solar heat collector field is connected with a feed pump and a second or a third high-pressure heater; a condenser, an extraction pump, a low-pressure heater, a deaerator, the feed pump, the high-pressure heater, the coal burning boiler and a steam turbine are connected in series in turn; and the steam turbine drives a dynamo and discharges steam to the condenser. Condensed water flows out from the condenser and is heated up and pressurized up by a the low-pressure heater, deoxidized by the deaerator, fed with water by a leading-out part of the feed pump and enters the solar heat collector field for heat absorption; after reaching a stream drawing parameter of a certain stage high-pressure heater, the condensed water returns and joins the drawing gas of the corresponding stage heater; the other part of feeding water enters the coal burning boiler through the high-pressure heater and becomes steam with high temperature and high pressure; and the steam enters the stream turbine, applies work and flows into the condenser to complete a thermodynamic cycle. The mixed heat power generating system with the paraboloid groove type solar heat collector to assist the coal burning boiler reduces coal consumption of a coal burning unit, improves thermal efficiency of the solar heat power generation and reduces the investment on the simple paraboloid groove type solar heat power generation.
Owner:NORTH CHINA ELECTRIC POWER UNIV (BAODING)
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products