Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

432results about How to "Reduce sharpness" patented technology

Line scan sequential lateral solidification of thin films

A polycrystalline film is prepared by (a) providing a substrate having a thin film disposed thereon, said film capable of laser-induced melting, (b) generating a sequence of laser pulses having a fluence that is sufficient to melt the film throughout its thickness in an irradiated region, each pulse forming a line beam having a predetermined length and width, said width sufficient to prevent nucleation of solids in a portion of the thin film that is irradiated by the laser pulse, (c) irradiating a first region of the film with a first laser pulse to form a first molten zone, said first molten zone demonstrating a variation in width along its length to thereby define a maximum width (Wmax) and a minimum width (Wmin), wherein the first molten zone crystallizes upon cooling to form one or more laterally grown crystals, (d) laterally moving the film in the direction of lateral growth a distance that is greater than about one-half Wmax and less than Wmin; and (e) irradiating a second region of the film with a second laser pulse to form a second molten zone having a shape that is substantially the same as the shape of the first molten zone, wherein the second molten zone crystallizes upon cooling to form one or more laterally grown crystals that are elongations of the one or more crystals in the first region.
Owner:THE TRUSTEES OF COLUMBIA UNIV IN THE CITY OF NEW YORK

Contact Lenses

ActiveUS20080055545A1Confer rotational and translational stabilitySimplify fitting and makingSpectales/gogglesEye diagnosticsLayer thicknessLandform
Disclosed is a method of designing a soft contact lens, the method comprising the steps of: (a) measuring or defining a wavefront generated by passage of light through a selected eye and using the wavefront to generate a computer model of the optical characteristics of the selected eye; (b) measuring or defining the topography of the cornea of the selected eye; (c) incorporating into the computer model a soft contact lens, the posterior surface topography of which is defined by the topography of the cornea, offset by an arbitrary amount intended to represent the tear layer thickness of the selected eye, said lens having a defined thickness at a selected locus on the anterior surface; (d) calculating a desired topography for the anterior surface of the lens such that the wavefront will be corrected to assume a desired pattern (for example, preferably planar, the plane of which is perpendicular to the optical axis of the lens) when passing through the computer model eye / lens combination; (e) remodelling the lens off-eye by adapting the posterior topography of the lens to a desired posterior topography to be manufactured; and (f) recalculating a modified anterior topography required as a result of adapting the posterior topography, the modified anterior topography being intended to preserve the desired wavefront pattern defined in (d) when the lens is in situ on the selected eye.
Owner:CONTACT LENS PRECISION LAB

Transparent polypropylene formulations that become opaque upon exposure to sufficient heat

Unique transparent polypropylene articles that can be tailored to become opaque when exposed to a sufficiently high temperature and which returns to substantially the same transparency level upon cooling. Such formulations include non-polypropylene polymeric constituents that exhibit refractive index measurements similar to the base clarified polypropylene at lower temperatures, as well as melting temperatures well below that for the base clarified polypropylene. Upon exposure to temperatures in close proximity to the melting temperature of the non-polypropylene polymeric constituents, the refractive index for such constituents will then become modified to the extent that the overall article appears at least partially opaque. In particular, the non-polypropylene polymeric constituents should exhibit melting temperatures well below that for the base clarified polypropylene, from about 60 to about 100° C. (well below the typical polypropylene melting temperatures of roughly about 160-190° C. for homopolymer and about 140-170° C. for typical random copolymer, both nucleated or non-nucleated). In this manner, a temperature sensitivity measuring thermoplastic article may be provided, and may be tailored to specific temperature ranges dependent on the melting temperatures exhibited by the non-polypropylene polymeric constituents. Methods of measuring temperature levels via the transformation of transparent polypropylene formulations to at least partially opaque versions thereof are also encompassed within this invention.
Owner:MILLIKEN & CO

High quality wide-range multi-layer image compression coding system

Systems, methods, and computer programs for high quality wide-range multi-layer image compression coding, including consistent ubiquitous use of floating point values in essentially all computations; an adjustable floating-point deadband; use of an optimal band-split filter; use of entire SNR layers at lower resolution levels; targeting of specific SNR layers to specific quality improvements; concentration of coding bits in regions of interest in targeted band-split and SNR layers; use of statically-assigned targets for high-pass and / or for SNR layers; improved SNR by using a lower quantization value for regions of an image showing a higher compression coding error; application of non-linear functions of color when computing difference values when creating an SNR layer; use of finer overall quantization at lower resolution levels with regional quantization scaling; removal of source image noise before motion-compensated compression or film steadying; use of one or more full-range low bands; use of alternate quantization control images for SNR bands and other high resolution enhancing bands; application of lossless variable-length coding using adaptive regions; use of a folder and file structure for layers of bits; and a method of inserting new intra frames by counting the number of bits needed for a motion compensated frame.
Owner:DEMOS GARY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products