Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

215 results about "Finite element limit analysis" patented technology

A finite element limit analysis (FELA) uses optimisation techniques to directly compute the upper or lower bound plastic collapse load (or limit load) for a mechanical system rather than time stepping to a collapse load, as might be undertaken with conventional non-linear finite element techniques. The problem may be formulated in either a kinematic or equilibrium form.

On-line prediction method for high-temperature pipe damage and longevity

The invention relates to an online predicting method of damage and service life of a high temperature pipeline. The method comprises the following implementing steps of: (1) carrying out finite element simulation analysis of damage and coupling to the high temperature pipeline; (2) finding out important monitoring parts according to the analysis results, arranging a sensor and monitoring the strain of the sensor; (3) carrying out finite element analysis (including analytical subprogram of a constitutive equation) for different working conditions and establishing database with damage, strain and residual life and strain; and (4) carrying out online inquiry and comparison to strain values detected online and the value of the load working condition and the data in the database so as to obtain the assessment value of corresponding damage and residual life. The online predicting method has the advantages of being capable of carrying out real-time monitoring to the high temperature pipeline in operation while production is carried out normally, reflecting the deformation and damage of the important parts and key parts in time, making correct estimation to the use life and residual life of the pipeline, being beneficial to guaranteeing safe production, adjusting the production load, planning maintenance reasonably and effectively prolonging the service life of production equipment.
Owner:EAST CHINA UNIV OF SCI & TECH

Finite element analysis-based variable-element permanent magnet synchronous motor modeling method

The invention relates to a finite element analysis-based variable-element permanent magnet synchronous motor modeling method which comprises the following steps of constructing a three-dimensional finite element electromagnetic field simulation model of a permanent magnet synchronous motor, and performing transient field road coupling analysis on the three-dimensional finite element electromagnetic field simulation model to obtain a large quantity of characteristic parameters; creating an improved permanent magnet synchronous motor voltage equation and a torque equation; constructing a simulation model of the permanent magnet synchronous motor according to an improved permanent magnet synchronous motor math model; leading all the obtained characteristic parameters into corresponding ports of the simulation model to construct a finite element analysis-based variable-element permanent magnet synchronous motor dynamic simulation model. The permanent magnet synchronous motor model modeled by the method disclosed by the invention comprehensively considers the magnetic field saturation effect, the d-q axis cross coupling effect, the eddy current effect, the hysteresis effect and the like; the instantaneity is considered, and the accuracy of the permanent magnet synchronous motor model is improved; the permanent magnet synchronous motor model is particularly suitable for the research on the dynamic processes such as power failure-bepelt and three-phase sudden short circuit of the permanent magnet synchronous motor.
Owner:NORTHWESTERN POLYTECHNICAL UNIV

Fatigue analysis method and fatigue analysis device of structural member in wind generating set

ActiveCN104573172AStress calculation results are accurateReflect changes in stress stateSpecial data processing applicationsFatigue damageElement model
The invention provides a fatigue analysis method and a fatigue analysis device of a structural member in a wind generating set. The method comprises the following steps: establishing a finite element model for a to-be-measured structural member involving bearing connection and related structural members thereof; applying load to the finite element model according to various preset load working conditions respectively; acquiring each node stress result of the to-be-measured structural member under each load working condition through finite element analysis; scaling down the acquired stress results by taking a fatigue load sequence which is pretreated through regularization as a coefficient; synthesizing the stress results under the different load components after scaling down to obtain a stress spectrum of each node of the finite element model of the to-be-measured structural member; calculating a fatigue damage value of the to-be-measured structural member according to the stress spectrum of each node and the stress-life curve of the to-be-measured structural member. By applying the method and the device, the fatigue analysis result of the structural member in the wind generating set is more accurate.
Owner:XINJIANG GOLDWIND SCI & TECH

Finite element analysis method for formula racing car frames

InactiveCN108170972ASolve problems that cannot be solved by manual calculation in experimentsImprove accuracyGeometric CADDesign optimisation/simulationElement modelVehicle frame
The invention provides a finite element analysis method for formula racing car frames, belongs to the technical field of computer aided engineering, and aims at solving the problem that existing racing car frame optimization and analysis are bad in correctness and long in design period. The finite element analysis method comprises the following steps of: A, constructing a three-dimensional model and carrying out meshing to convert the three-dimensional model into a finite element model; B, applying boundary conditions according to each working condition, carrying out finite element analysis and calculation on frame bending rigidity under each working condition, and comparing the analysis result with material bending strength to carry out structure optimization; C, respectively applying forced displacement in opposite directions on two sides of the car frame, carrying out finite element analysis and calculation to obtain torsional rigidity of the car frame, and carrying out structure optimization according to the analysis result; and D, analyzing and comparing whether a fixed frequency of each order modal of the car frame is different from an external main excitation frequency or not, and carrying out structure optimization according to the result. According to the method, the correctness of optimization and analysis is improved, the expenditure is decreased and the design period is shortened.
Owner:ZHEJIANG JIRUN AUTOMOBILE +2

Computing method for hub ultimate strength of wind turbine generator system

A computing method for hub ultimate strength of a wind turbine generator system belongs to the technical field of wind power generation, and comprises the following steps: modeling by adopting software of finite element analysis, performing finite element mesh generation, setting constraint conditions and computing to obtain a deformation and stress cloud chart. The modeling process is as follows: 1, drawing a 3D model for a hub, importing the 3D model into a finite element software platform, and drawing a 3D entity model for the connection part of blades and the hub and the connection part of a main shaft and the hub in the finite element software; 2, setting material attributes for the blades, the main shaft and the hub, establishing a finite element model thereof, rigidly coupling the blades, the main shaft and the hub, and determining an overall coordinate system of the hub; 3, establishing nodes at root parts of the hub and each blade, converting the nodes into a blade root coordinate system specified by Germanischer Lloyd, then rigidly coupling the nodes to the blades, so that the load can be transmitted to the hub through the blades. The computing method facilitates accurate computation of strength performance of the hub, saves the computing time and improves the computing efficiency.
Owner:CHINA CREATIVE WIND ENERGY +3

Remote finite element analysis method serving for industry alliance

The invention provides with a remote finite element analysis method serving for an industry alliance. The remote finite element analysis method comprises the steps of (1) finite element template extraction, namely classifying and analyzing parts needing finite element analysis in the products of member enterprises in the industry alliance, and extracting finite element templates, including boundary condition types and analysis process parameters, (2) geometric model construction, namely performing geometric modeling on the structures of the needing finite element analysis in the products of the member enterprises in the industry alliance by use of a CAD (Computer-Aided Design) system mainly in a parametric modeling manner and a user-defined modeling manners, (3) boundary condition calibration, namely performing necessary calibration on pels, to which the boundary conditions are applied, in geometric models, thereby taking the geometric models as parameter input interfaces of finite element analysis, (4) finite element model conversion, namely converting the geometric models into finite element models by use of ANSYS Workbench, (5) remote finite element calculation, namely completing remote finite element analysis on the parts by controlling a collaborative simulation environment by use of a command stream, (6) finite element analysis result feedback, namely realizing three-dimensional visual feedback of the finite element analysis results by use of WebGL technology, and (7) public service platform implementation.
Owner:ZHEJIANG UNIV OF TECH

A flexible mechanism topology optimization design method based on adaptive constraint

The invention discloses a flexible mechanism topology optimization design method based on self-adaptive constraint. The method is used for solving the problem of single hinge existing in flexible mechanism topology optimization. The method comprises the following steps that an initial design area is given, finite element grids are divided, a finite element model of a current effective structure isformed, and meanwhile a mapping relation data file of a maximum design area grid model and the finite element model of the current effective structure is generated and stored; Performing finite element analysis to obtain displacement vector data under an actual load and a unit virtual load; Establishing a function expression of adaptive constraint based on the mutual strain energy, the flexibility, the volume and the mechanism comprehensive flexibility function change rate, establishing an approximate optimization model, converting the model into an approximate quadratic mathematical programming model, and obtaining a topological variable solution; And automatically updating the structure topological variable, and reading the structure grid and the model data to form a new structure system finite element model. The above steps are repeated, and the optimal topology can be obtained when the iteration process converges.
Owner:CHANGSHA UNIVERSITY OF SCIENCE AND TECHNOLOGY

10-kv three-core cable finite element thermal analysis method

InactiveCN104731898AIntuitive understanding of heating and cooling conditionsThe modeling process is intuitive and convenientData processing applicationsSpecial data processing applicationsProduction rateCurrent load
The invention discloses a 10-kV three-core cable finite element thermal analysis method. The method comprises the steps of 1, determining the geometric structure, size and material parameters of a 10-kV three-core cable; 2, utilizing the Solid Works for building a three-dimensional model according to the geometric structure of the 10-kV three-core cable; 3, importing the three-dimensional model built by the Solid Works into ANSYS and converting the three-dimensional model into a geometric model in the ANSYS; 4, calculating the heat production rate of a heating portion according to the current loaded by the cable and parameters of the heating portion of the cable; 5, loading material parameters of layers in the ANSYS, dividing units and applying loads to obtain the temperature field distribution result of the 10-kV three-core cable. According to the 10-kV three-core cable finite element thermal analysis method, the three-dimensional model building function of the Solid Works and the finite element analysis function of the ANSYS are combined, three-dimensional temperature field simulation of the 10-kV three-core cable is achieved, the operational process is visual and convenient, the model is precise and reliable, the operation efficiency is high, and the method can be popularized in finite element thermal analysis of complex structures like cable intermediate connectors.
Owner:SOUTH CHINA UNIV OF TECH

Method for determining plastic forming limit of sheet material based on finite element calculation analysis

ActiveCN109284515AShort cycleShorten the cycle of experimentsDesign optimisation/simulationSpecial data processing applicationsPost yieldEngineering
The invention provides a method for determining plastic forming limit of sheet material based on finite element calculation analysis. The method of the invention comprises the following steps: (1) obtaining the elastic modulus, Poisson's ratio, yield strength and post-yield stress of the sheet material Strain correspondence; (2) establishing the geometrical models of punch, concave die, blank holder and sample; (3) adding the corresponding material properties and setting the corresponding friction coefficient in the material model of the finite element software; 4) determining that applied load accord to the actual downward pressure amount and downward pressure of the blank holder ring; (5) controlling the downward pressing displacement of the punch, that is, the downward pressing amount;(6) meshing the sample; (7) defining the calculation time; (8) obtaining the results of stress-strain evolution in a sample forming experiment, and outputting the stress-strain nephogram of all the units; (9) using S-G filter to perform first and second order fitting on main strain. The invention provides reliable judging basis and criterion for obtaining accurate results of sheet metal stamping forming.
Owner:SHANGHAI MEISHAN IRON & STEEL CO LTD

Shot peening strengthening treatment process parameter determination method based on finite element analysis

The invention discloses a shot peening strengthening treatment process parameter determination method based on finite element analysis. The shot peening strengthening treatment process parameter determination method based on the finite element analysis is characterized in that a local finite element model of a pellet and a shot-peened material is built by utilizing the material properties of the pellet and shot-peened material; the finite element analysis is carried out by setting different technological parameters, so that the maximum average stress is obtained, and an optimal regression equation is produced by utilizing a regression analysis method; the shot peening strengthening treatment process parameter is determined through the optimal regression equation. According to the shot peening strengthening treatment process parameter determination method, the change rule of the residual internal stress along with the layer depth under different parameters and the distribution situation of the residual stress is found by researching the internal relation between the shot peening strength and the shot peening process parameter, so as to scientifically and reasonably determine the shot peening process parameter according to the requirement on shot peening strength.
Owner:滁州汽车与家电技术及装备研究院 +1

Individual abutment and manufacturing method thereof

The invention relates to an individual abutment and a manufacturing method thereof. The manufacturing method comprises the following steps: carrying out reverse modeling through CT scanning and carrying out parametrization design on a model through Unigraphics NX, implementing precise repairing on the abutment model, carrying out simulation analysis on the abutment model by virtue of a finite element analysis method, and implementing model optimization design according to a finite element stress analysis result so as to meet the attributes of an abutment material; carrying out three-dimensional hierarchical slicing treatment on the abutment model meeting the attributes of the abutment material, and promoting the generation of a corresponding path file; and according to the path file, reasonably controlling the parameters of selective laser melting equipment and molding so as to obtain the individual abutment. The manufacturing method disclosed by the invention can be used for effectively guaranteeing the accuracy of stress direction and size of the abutment as well as the precision of molding, and the manufactured individual abutment can fit to jaw characteristics of a patient more precisely compared with the prior art, so that comfort in use is improved and the service life of the abutment is prolonged.
Owner:GUANGZHOU INST OF ADVANCED TECH CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products