Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

260results about "Time pulses" patented technology

Method and corresponding device for taming crystal oscillation frequency of time-keeping device

The invention discloses a method and corresponding device for taming crystal oscillation frequency of a time-keeping device, which comprises the following steps of: step 1, acquiring the standard time pulse A that is located and output by a navigation satellite; step 2, acquiring the standard time pulse B output by device crystal oscillation fractional frequency; step 3, measuring the clock difference between the standard time pulse A and the standard time pulse B; and step 4, if clock difference exists between A and B, adjusting the crystal oscillation frequency of the device to make the clock difference be in the allowed scope. For the time-keeping equipment with pressure control and temperature compensating crystal oscillation or pressure control crystal oscillation, the frequency deviation of the corrected crystal oscillation can be detected in real time by the method provided by the invention to eliminate the time-keeping error caused by crystal oscillation frequency deviation and avoid accumulation of error. Therefore, the invention is suitable for various satellite navigation systems, such as GPS, Beidou first generation navigation satellite, Beidou second generation navigation satellite, GLONASS, GALILEO and other satellite navigation systems.
Owner:TECHTOTOP MICROELECTRONICS

Method and apparatus for implementing a high-precision interval timer utilizing multiple oscillators including a non-optimal oscillator

The present invention is a novel method and apparatus for implementing a high-precision timer utilizing a non-optimal oscillator and a high-speed oscillator wherein only one oscillator is enabled at a given moment in time. The high-precision timer method and apparatus comprises a timer and an error-correction technique. In one embodiment, the timer of the present invention is constructed from a high-speed oscillator and a low-speed non-optimal oscillator. The timer operates from the high-speed oscillator during on-the-air modes of operation and from the low-speed non-optimal oscillator during sleep modes of operation. The present inventive method corrects errors that are introduced by the non-optimal oscillator and a swallow counter. The errors are corrected using an error-correction technique having two steps: an error-determination step and an error-correction step. In the preferred embodiment of the error-determination step, a total error for a time interval is determined by performing the following steps: (1) calculating an individual error that occurs at each pulse; (2) multiplying the individual error by the number of pulses occurring during the time interval; and (3) adjusting for a non-optimal counter. Once an error has been determined, the error-correction step adjusts a clock counter accordingly. Depending upon the error-correction technique used, the error-correction step can correct the total error at one of several locations within a timer counter chain that is used to practice the present invention. The implementation of the present invention allows a straightforward realization of multiple timers.
Owner:QUALCOMM INC

Clock-temperature-error compensation method and system thereof

The invention relates to the field of related clock error compensation technology, and in particular relates to a clock-temperature-error compensation method and a system thereof. The clock-temperature-error compensation method comprises the following steps of: measuring the temperature at initial time, obtaining and storing a first temperature value, and storing the first temperature value; after measuring time T, measuring the temperature again and obtaining a second temperature value; adopting the first temperature value or the second temperature value as the measuring temperature, and according to the relation between the measuring temperature and the clock crystal-oscillator error, calculating and obtaining an error value of a clock; calculating a clock error of the measuring time T; repeatedly executing the steps from step 2 to step 4, till the clock error accumulated value is larger than a preset clock adjusting threshold, adding the value same as the clock adjusting threshold for the clock, and executing the steps from step 2 to step 4 again. The clock-temperature-error compensation method has the advantages that the clock compensation can be realized only by using the common circuit and algorithm without needing to use GPS or a function clock chip with expensive price and adjustable oscillating circuit frequency, so that the production cost is greatly reduced.
Owner:HUIZHOU DESAY SV AUTOMOTIVE

B code decoding technology fused institute of electrical and electronic engineers 1588 (IEEE1588) intelligent power grid time transmission method and device

The invention discloses a B code decoding technology fused institute of electrical and electronic engineers 1588 (IEEE1588) intelligent power grid time transmission method. The time signal input end of an embedded processor and network interface module on an intelligent power grid transformer substation time transmission device has two groups of input signals, one group comprises 1 pulse per second (PPS) signals and national marine electronics association 0183 (NMEA0183) signals, and the other group comprises inter-range instrumentation group-B (IRIG-B) signals; a signal selection module is used for selecting a group of signals with the highest time accuracy, and the priorities of the 1PPS and NMEA0183 signals are higher than that of the IRIG-B signals; a decoding module deserializes the signals selected by the signal selection module, and provides a timestamp for the embedded processor and network interface module; and a time protocol for time message resolution in an IRIG-B decoding module is an NMEA0183 protocol, and a global positioning system (GPS) receiver transmits position and speed information to a processor through a serial port according to the standard specification of the NMEA0183 protocol which is a standard protocol of the GPS receiver.
Owner:南京澳德思电气有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products