Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

38results about How to "Minimize energy" patented technology

Small volume nebulizer

ActiveUS20040031485A1Minimize energy lossMinimize decelerationRespiratorsSpray nozzlesNebulizerProximate
An atomizing nebulizer for dispensing a substance or medicament is described. The nebulizer is formed with a reservoir base releasably secured to an effluent vent cap that together capture a diffuser and integral dispersing baffle that are further formed with an uptake lumen or channel terminating with a nozzle jet. The diffuser dispersing baffle is positioned relative to the jet nozzle to optimize atomization of any of a number of such substances so as to maximize disbursement of the substance. The reservoir base also incorporates a pressurized fluid-accelerating inlet tube terminated with a metering orifice that cooperates with the nozzle jet when the inlet tube is received within the diffuser uptake lumen or channel. When so received, the nozzle jet axially registers proximate and superior to the orifice to establish a vacuum space that is in fluid communication with a capillary interstice established between the walls of the exterior of the inlet tube and the confronting interior surface of the diffuser lumen or channel. When a pressurized fluid is communicated through the lumen, the orifice, and into the vacuum space towards the nozzle jet, a vacuum develops in the vacuum space that, in combination with the capillary action of the interstice, draws the fluid proximate to the orifice and disperses it into droplets that are then entrained into a fluid stream to be further atomized upon impact with the baffle and then dispensed.
Owner:SUNMED GRP HLDG LLC

Small volume nebulizer

ActiveUS7267120B2Minimize decelerationMinimize energyRespiratorsSpray nozzlesProximateNebulizer
An atomizing nebulizer for dispensing a substance or medicament is described. The nebulizer is formed with a reservoir base releasably secured to an effluent vent cap that together capture a diffuser and integral dispersing baffle that are further formed with an uptake lumen or channel terminating with a nozzle jet. The diffuser dispersing baffle is positioned relative to the jet nozzle to optimize atomization of any of a number of such substances so as to maximize disbursement of the substance. The reservoir base also incorporates a pressurized fluid-accelerating inlet tube terminated with a metering orifice that cooperates with the nozzle jet when the inlet tube is received within the diffuser uptake lumen or channel. When so received, the nozzle jet axially registers proximate and superior to the orifice to establish a vacuum space that is in fluid communication with a capillary interstice established between the walls of the exterior of the inlet tube and the confronting interior surface of the diffuser lumen or channel. When a pressurized fluid is communicated through the lumen, the orifice, and into the vacuum space towards the nozzle jet, a vacuum develops in the vacuum space that, in combination with the capillary action of the interstice, draws the fluid proximate to the orifice and disperses it into droplets that are then entrained into a fluid stream to be further atomized upon impact with the baffle and then dispensed.
Owner:SUNMED GRP HLDG LLC

Variable valve actuator with latch at one end

Actuators and corresponding methods and systems for controlling such actuators offer efficient, fast, flexible control with large forces. In an exemplary embodiment, an fluid actuator includes a housing having first and second fluid ports, an actuation cylinder in the housing defining a longitudinal axis and having first and second ends in first and second directions, an actuation piston in the cylinder with first and second surfaces moveable along the longitudinal axis, a spring subsystem biasing the actuation piston to a neutral position, a first fluid space defined by the first end of the actuation cylinder and the first surface of the actuation piston, a second fluid space defined by the second end of the actuation cylinder and the second surface of the actuation piston; and a flow bypass that short-circuits the first and second fluid spaces when the actuation piston is not proximate to the second end of the actuation cylinder. A first flow mechanism controls fluid communication between the first fluid space and the first port, whereas a second flow mechanism controls fluid communication between the second fluid space and the second port. The first flow mechanism is always wide-open, whereas the second flow mechanism is open and closed when the flow bypass is closed and open, respectively. The system is able to latch the actuation piston at its second direction end position while making it possible for the actuation piston not to dwell at its first direction end position, thus reducing the overall actuation time.
Owner:LGD TECH LLC

Unmanned aerial vehicle assisted wireless sensor network data collection method

The invention discloses an unmanned aerial vehicle-assisted wireless sensor network data collection method, which comprises the following steps that: (1) sensor nodes collect information in a communication range, generate corresponding event packets and send the event packets back to a base station; (2) a base station classifies the nodes of which the information value attenuation indexes are notzero as key nodes, and classifies the nodes of which the information value attenuation indexes are zero as common nodes; (3) access paths of all key nodes are planned by adopting a greedy algorithm according to the geographic positions of the nodes; (4) access paths of all common nodes are planned by adopting an ant colony algorithm of neighborhood search according to geographic positions of the nodes; (5) the total length of the path is calculated and whether the total length of the path is greater than the maximum flight length of the unmanned aerial vehicle is judged; (6) if so, the deletion gain of each common node is calculated, nodes corresponding to the maximum deletion gain are removed in the path, and the step (5) is executed; if not, the step (7) is executed; and (7) an unmannedaerial vehicle sequentially collects data of the sensor nodes according to the planned path. The method is low in energy consumption and simple in structure.
Owner:SOUTHEAST UNIV

Variable valve actuator with latch at one end

Actuators and corresponding methods and systems for controlling such actuators offer efficient, fast, flexible control with large forces. In an exemplary embodiment, an fluid actuator includes a housing having first and second fluid ports, an actuation cylinder in the housing defining a longitudinal axis and having first and second ends in first and second directions, an actuation piston in the cylinder with first and second surfaces moveable along the longitudinal axis, a spring subsystem biasing the actuation piston to a neutral position, a first fluid space defined by the first end of the actuation cylinder and the first surface of the actuation piston, a second fluid space defined by the second end of the actuation cylinder and the second surface of the actuation piston; and a flow bypass that short-circuits the first and second fluid spaces when the actuation piston is not proximate to the second end of the actuation cylinder. A first flow mechanism controls fluid communication between the first fluid space and the first port, whereas a second flow mechanism controls fluid communication between the second fluid space and the second port. The first flow mechanism is always wide-open, whereas the second flow mechanism is open and closed when the flow bypass is closed and open, respectively. The system is able to latch the actuation piston at its second direction end position while making it possible for the actuation piston not to dwell at its first direction end position, thus reducing the overall actuation time.
Owner:LGD TECH LLC

Method for concentrating aqueous containing solute into high concentration by hydraulic-membrane process under no difference in osmotic pressure

The present invention relates to a method of concentrating an aqueous solution at low pressure under a zero osmotic pressure difference condition, and more particularly, to a method of concentrating an aqueous solution containing a solute to be concentrated, at low pressure under a zero osmotic pressure difference condition. The method of the present invention comprises the steps of: (a) discharging water of a solute-containing aqueous solution to be concentrated, from a reverse osmosis separator to the outside, and transferring the concentrated aqueous solution to a zero osmotic pressure difference concentrator; (b) further concentrating the concentrated aqueous solution using the zero osmotic pressure difference concentrator comprising a feed chamber and a draw chamber, which are separated from each other by a reverse osmosis membrane or a forward osmosis membrane; and (c) recovering the solute and water from the aqueous solution further concentrated in the zero osmotic pressure difference concentrator. When the method of concentrating the aqueous solution at low pressure under the zero osmotic pressure difference condition is used, the aqueous solution can be concentrated to the maximum saturation concentration of a solute or a solution concentration of 100% using a reduced amount of energy without having to use an extraction solvent. In addition, there is an advantage in that a separate osmosis draw solution does not need to be used.
Owner:KOREA ADVANCED INST OF SCI & TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products