Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

30results about How to "Wide input" patented technology

Wide-range bidirectional conversion circuit and control method

The invention discloses a wide-range bidirectional conversion circuit and a control method. The wide-range bidirectional conversion circuit comprises a three-stage bidirectional converter and a control unit, and the three-stage bidirectional converter is formed by sequentially connecting a non-isolated DC/DC converter, an isolated DC/DC converter and a DC/AC inverter. When the system works in theforward direction, a direct-current power supply or energy storage equipment realizes grid-connected energy feedback through the non-isolated DC/DC converter, the isolated DC/DC converter and the DC/AC inverter; and during reverse working, an alternating voltage supplies power to a direct-current load or charges an energy storage device through a rectifying circuit, the isolated DC/DC converter and the non-isolated DC/DC converter. In order to adapt to different power levels and realize higher input current ripple control, the non-isolated converter adopts a multi-phase interleaved parallel structure; and in order to further broaden the requirements of input and output ranges in practical application, the isolated converter can be controlled by adopting a full-bridge/half-bridge variable structure. The whole system has the advantages of wide input direct-current voltage range, wide output alternating-current voltage range, wide load range, small current ripple, high-frequency isolation, high efficiency, energy conservation, environmental protection and the like.
Owner:NANJING UNIV OF AERONAUTICS & ASTRONAUTICS

Differential circuit, amplifier circuit, and display device using the amplifier circuit

A differential circuit comprises first and second differential pairs driven by constant-current sources, respectively, for receiving input voltages, first transistors, second transistors, and switches are included. In a first connection state, one current mirror comprises among the first transistors. Input and output terminals of the one current mirror are connected to outputs of the first differential pair. Two current mirrors are composed by the second transistors. Inputs of the two current mirrors are connected to the outputs of the second differential pair, and the outputs of the two current mirrors are connected to an input and an output of the one current mirror circuit. The output of the one current mirror is a first output. In a second connection state, one current mirror comprises among the second transistors. The input and the output of the one current mirror are connected to the outputs of the second differential pair. Two current mirrors are composed by the first transistors. The inputs of the two current mirrors are connected to the outputs of the first differential pair, and the outputs of the two current mirror circuits are connected to the input and the output of the one current mirror circuit, respectively. The output terminal of the one current mirror is a second output terminal.
Owner:NEC LCD TECH CORP

Differential circuit, amplifier circuit, and display device using the amplifier circuit

A differential circuit comprises first and second differential pairs driven by constant-current sources, respectively, for receiving input voltages, first transistors, second transistors, and switches are included. In a first connection state, one current mirror comprises among the first transistors. Input and output terminals of the one current mirror are connected to outputs of the first differential pair. Two current mirrors are composed by the second transistors. Inputs of the two current mirrors are connected to the outputs of the second differential pair, and the outputs of the two current mirrors are connected to an input and an output of the one current mirror circuit. The output of the one current mirror is a first output. In a second connection state, one current mirror comprises among the second transistors. The input and the output of the one current mirror are connected to the outputs of the second differential pair. Two current mirrors are composed by the first transistors. The inputs of the two current mirrors are connected to the outputs of the first differential pair, and the outputs of the two current mirror circuits are connected to the input and the output of the one current mirror circuit, respectively. The output terminal of the one current mirror is a second output terminal.
Owner:NEC LCD TECH CORP

Self-compensating robot tail end six-dimensional torque transducer collecting system and zero-drift compensating method and zero-drift obtaining method thereof

The invention discloses a self-compensating robot tail end six-dimensional torque transducer collecting system and a zero-drift compensating method and zero-drift obtaining method thereof, and belongs to the field of information collection of robot transducer systems. In order to solve the problem that the degree of accuracy of collected data of an existing robot tail end six-dimensional torque transducer collecting system is low, a force moment signal and a temperature signal which are input by the collecting system undergo information conditioning, collecting and signal processing in sequence, and a signal processor enables the data of a transducer combined with a temperature drift curve to be compensated to a force moment signal input module; a digital analog converter is used for converting a zero-drift compensating voltage output by the signal processor into an analog signal to be input to the force moment signal input module, and the signal processor conducts data exchange with an upper computer through a communication module. The zero-drift compensating method is realized by the way that the zero-drift compensating voltage or the resistance of the force moment signal input module is adjusted to meet the fixed formula requirement. The self-compensating robot tail end six-dimensional torque transducer collecting system and the zero-drift compensating method and zero-drift obtaining method thereof are used for signal collection of robot tail end six-dimensional torque transducers.
Owner:HARBIN INST OF TECH

Interconnect delay and slew metrics based on the lognormal distribution

A method of determining a circuit response (such as delay or slew) from a ramp input of an RC circuit calculates two circuit response parameters using a given circuit response metric based on a step input for the RC circuit, and extends the circuit response metric to a ramp input of the RC circuit by combining the first and second circuit response parameters to yield an estimated ramp response. The novel technique is based on the use of probability distribution functions and cumulative distribution functions to characterize the impulse response of the RC circuit, and the calculating steps derive the first and second circuit response parameters from such statistical distribution functions. In particular, the calculating steps may use a standard deviation or a mean of a probability distribution function corresponding to the circuit response parameter. In one application, the invention is used to estimate delay response for the ramp input of the RC circuit. In another application, the invention is used to estimate output slew for the ramp input of the RC circuit. New delay and slew metrics are also disclosed which are derived by matching one or more properties of the network impulse response to a lognormal distribution. For delay, the mean and variance of a probability distribution function (PDF) are correlated to the lognormal distribution. For slew, alternative metrics are provided; one slew metric correlates the mean and variance of the PDF to the lognormal distribution, while a second slew metric correlates the variance and skewness of the PDF to the lognormal distribution.
Owner:INT BUSINESS MASCH CORP

Constant-current-to-constant-voltage conversion topology system and control method thereof

The invention provides a constant-current-to-constant-voltage conversion topology system and a control method thereof. The constant-current-to-constant-voltage conversion topology system comprises a shunt meter circuit, a first filter circuit, an inverter circuit, a resonance circuit, a high-frequency transformer, a rectifying circuit, a second filter circuit, a voltage and current acquisition circuit, a controller circuit and a driving circuit. The shunt meter circuit is connected with an input current source to realize conversion from a current source to a voltage source, and meanwhile, a higher voltage is generated at the front end. The first filter circuit is connected with the output of the shunt meter, and the LLC resonant circuit is connected with the first filter circuit, is firstly inverted into high-frequency alternating current through the inverter circuit, and then supplies power to a load after being isolated by the resonant circuit and the transformer and rectified and filtered by the rectifying circuit. According to the invention, constant-current to constant-voltage conversion can be realized, and wide input and load changes can be endured. And meanwhile, a switching tube of the post-stage LLC resonant converter can realize ZVS (Zero Voltage Suppressor) opening, and a secondary rectifier diode is also a ZVS switch, so that relatively high efficiency can be achieved.
Owner:CHINA UNIV OF GEOSCIENCES (WUHAN)

Six-dimensional torque sensor acquisition system at the end of robot with automatic compensation and its zero drift compensation method and zero drift acquisition method

ActiveCN103913259BWide inputSimplifies Negative Supply DesignForce measurementManipulatorControl theoryVIT signals
The invention discloses a self-compensating robot tail end six-dimensional torque transducer collecting system and a zero-drift compensating method and zero-drift obtaining method thereof, and belongs to the field of information collection of robot transducer systems. In order to solve the problem that the degree of accuracy of collected data of an existing robot tail end six-dimensional torque transducer collecting system is low, a force moment signal and a temperature signal which are input by the collecting system undergo information conditioning, collecting and signal processing in sequence, and a signal processor enables the data of a transducer combined with a temperature drift curve to be compensated to a force moment signal input module; a digital analog converter is used for converting a zero-drift compensating voltage output by the signal processor into an analog signal to be input to the force moment signal input module, and the signal processor conducts data exchange with an upper computer through a communication module. The zero-drift compensating method is realized by the way that the zero-drift compensating voltage or the resistance of the force moment signal input module is adjusted to meet the fixed formula requirement. The self-compensating robot tail end six-dimensional torque transducer collecting system and the zero-drift compensating method and zero-drift obtaining method thereof are used for signal collection of robot tail end six-dimensional torque transducers.
Owner:HARBIN INST OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products