Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

168 results about "Coiled coil" patented technology

A coiled coil is a structural motif in proteins in which 2–7 alpha-helices are coiled together like the strands of a rope (dimers and trimers are the most common types). Many coiled coil-type proteins are involved in important biological functions such as the regulation of gene expression, e.g. transcription factors. Notable examples are the oncoproteins c-Fos and c-jun, as well as the muscle protein tropomyosin.

Recombinant fibrin chains, fibrin and fibrin-homologs

The invention is directed to fibrin materials for use in fibrin compositions and methods that avoid the need to use thrombin as an activating agent for fibrin monomer-based sealants. The invention provides for substantially pure fibrin chains, fibrin chain precursors, fibrin chains with other N-terminal extensions, fibrin monomer, fibrin-homolog and fibrin-analog. The invention further provides for variant fibrin .gamma.-chains. The variant gamma-chain contains one or more mutations and/or deletions in the C-terminal region following the coiled-coil forming region such that, when incorporated into fibrin-homolog, the homolog lacks the ability to self-polymerize but has the ability to form non-covalent bonds, and thereby form mixed polymers useful as sealants, with fibrinogen. The invention also provides nucleotide sequences encoding fibrin chains or fibrin chain variants and cells expressing fibrin chains, fibrin chain variants, fibrin monomer, fibrin precursor or fibrinogen-analog. The invention further provides a method of forming fibrin-related proteins in vitro from their component fibrin chains. The invention additionally provides a method for forming a fibrin sealant by a reacting a first fibrin-related protein that is incapable of self-polymerizing with a second fibrin-related protein that is incapable of self-polymerizing. Fibrin chains produced by methods of the present invention may be used as sources of substantially pure starting material for the production of important fibrin-derived factors that regulate angiogenesis, platelet aggregation, and other physiological processes.
Owner:BRISTOL MYERS SQUIBB CO

Methods for the inhibition of epstein-barr virus transmission employing anti-viral peptides capable of abrogating viral fusion and transmission

Fusion of the viral envelope, or infected cell membranes with uninfected cell membranes, is an essential step in the viral life cycle. Recent studies involving the human immunodeficiency virus type 1(HIV-1) demonstrated that synthetic peptides (designated DP-107 and DP-178) derived from potential helical regions of the transmembrane (TM) protein, gp41, were potent inhibitors of viral fusion and infection. A computerized antiviral searching technology (C.A.S.T.) that detects related structural motifs (e.g., ALLMOTI 5, 107x178x4, and PLZIP) in other viral proteins was employed to identify similar regions in the Epstein-Barr virus (EBV). Several conserved heptad repeat domains that are predicted to form coiled-coil structures with antiviral activity were identified in the EBV genome. Synthetic peptides of 16 to 39 amino acids derived from these regions were prepared and their antiviral activities assessed in a suitable in vitro screening assay. These peptides proved to be potent inhibitors of EBV fusion. Based upon their structural and functional equivalence to the known HIV-1 inhibitors DP-107 and DP-178, these peptides should provide a novel approach to the development of targeted therapies for the treatment of EBV infections.
Owner:TRIMERIS

Compounds for inhibition of HIV infection by blocking HIV entry

ActiveUS7241803B2Potent anti-HIV activityInhibit HIV replicationBiocideOrganic chemistryFluorescenceCoiled coil
A group of compounds that inhibit HIV replication by blocking HIV entry was identified. Two representative compounds, designated NB-2 and NB-64, inhibited HIV replication (p24 production) with IC50 values <0.5 μg/ml. It was proved that NB-2 and NB-64 are HIV entry inhibitors by targeting the HIV gp41 since: 1) they inhibited HIV-mediated cell fusion; 2) they inhibited HIV replication only when they were added to the cells less than one hour after virus addition; 3) they did not block the gp120-CD4 binding; 4) they did not interact with the coreceptor CXCR4 since they failed to block anti-CXCR4 antibody binding to CXCR4-expressing cells; 5) they blocked the formation of the gp41 core that is detected by sandwich enzyme linked immunosorbent assay (ELISA) using a conformation-specific MAb NC-1; 6) they inhibited the formation of the gp41 six-helix bundle revealed by fluorescence native-polyacrylamide gel electrophoresis (FN-PAGE); and 7) they blocked binding of D-peptide to the hydrophobic cavity within gp41 coiled coil domain, modeled by peptide IQN17. These results suggested that NB-2 and NB-64 may interact with the hydrophobic cavity and block the formation of the fusion-active gp41 coiled coil domain, resulting in inhibition of HIV-1 mediated membrane fusion and virus entry.
Owner:NEW YORK BLOOD CENT
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products