Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2143 results about "Homomeric" patented technology

A homomeric substance is one which is made out of any number of identical products or molecules. e.g. A homomeric peptide = glutathione A peptide which is made up of only a single type of amino acid subunit; e.g., alanylalanylalanine. ALA-ALA-ALA e.g. A homomeric channel = α7-Nicotinic receptor channel can be made from 5 α nicotinic subunits and is therefore said to be homomeric.

Novel elongase gene and method for producing multiple-unsaturated fatty acids

The invention relates to a novel elongase gene with the sequences stated in sequence SEQ ID NO:1, SEQ ID NO: 3, SEQ ID NO: 5 and SEQ ID NO: 7 or their homologs, derivatives or analogs, to a gene construct comprising this gene or its homologs, derivatives and analogs, and to its use. The invention also relates to vectors or transgenic organisms comprising an elongase gene with the sequence SEQ ID NO:1, SEQ ID NO: 3, SEQ ID NO: 5 and SEQ ID NO: 7 or its homologs, derivatives and analogs. The invention furthermore relates to the use of the elongase gene sequences alone or in combination with further elongases and / or further fatty acid biosynthesis genes. The present invention relates to a novel elongase gene with the sequence SEQ ID NO:1 or its homologs, derivatives and analogs. Furthermore, the invention relates to a process for the preparation of polyunsaturated fatty acids and to a process for introducing DNA into organisms which produce large amounts of oils and, in particular, oils with a high content of unsaturated fatty acids. Moreover, the invention relates to an oil and / or a fatty acid preparation with a higher content of polyunsaturated fatty acids with at least two double bonds and / or a triacylglycerol preparation with a higher content of polyunsaturated fatty acids with at least two double bonds.
Owner:BASF AG

Methods and Organisms for Growth-Coupled Production of 3-Hydroxypropionic Acid

The invention provides a non-naturally occurring microorganism having one or more gene disruptions, the one or more gene disruptions occurring in genes encoding an enzyme obligatory coupling 3-hydroxypropionic acid production to growth of the microorganism when the gene disruption reduces an activity of the enzyme, whereby the one or more gene disruptions confers stable growth-coupled production of 3-hydroxypropionic acid onto the non-naturally occurring microorganism. Also provided is a non-naturally occurring microorganism comprising a set of metabolic modifications obligatory coupling 3-hydroxypropionic acid production to growth of the microorganism, the set of metabolic modifications having disruption of one or more genes including: (a) the set of genes selected from: (1) adhE, ldhA, pta-ackA; (2) adhE, ldhA, frdABCD; (3) adhE, ldhA, frdABCD, ptsG; (4) adhE, ldhA, frdABCD, pntAB; (5) adhE, ldhA, fumA, fumB, fumC; (6) adhE, ldhA, fumA, fumB, fumC, pntAB; (7) pflAB, ldhA, or (8) adhE, ldhA, pgi in a microorganism utilizing an anaerobic β-alanine 3-HP precursor pathway; (b) the set of genes selected from: (1) tpi, zwf; (2) tpi, ybhE; (3) tpi, gnd; (4) fpb, gapA; (5) pgi, edd, or (6) pgi, eda in a microorganism utilizing an aerobic glycerol 3-HP precursor pathway; (c) the set of genes selected from: (1) eno; (2) yibO; (3) eno, atpH, or other atp subunit, or (4) yibO, atpH, or other atp subunit, in a microorganism utilizing a glycerate 3-HP precursor pathway, or an ortholog thereof, wherein the microorganism exhibits stable growth-coupled production of 3-hydroxypropionic acid. The disruptions can be complete gene disruptions and the non-naturally occurring organisms can include a variety of prokaryotic or eukaryotic microorganisms. A method of producing a non-naturally occurring microorganism having stable growth-coupled production of 3-hydroxypropionic acid is further provided. The method includes: (a) identifying in silico a set of metabolic modifications requiring 3-hydroxypropionic acid production during exponential growth, and (b) genetically modifying a microorganism to contain the set of metabolic modifications requiring 3-hydroxypropionic acid production.
Owner:GENOMATICA INC

Recombinant fibrin chains, fibrin and fibrin-homologs

The invention is directed to fibrin materials for use in fibrin compositions and methods that avoid the need to use thrombin as an activating agent for fibrin monomer-based sealants. The invention provides for substantially pure fibrin chains, fibrin chain precursors, fibrin chains with other N-terminal extensions, fibrin monomer, fibrin-homolog and fibrin-analog. The invention further provides for variant fibrin .gamma.-chains. The variant gamma-chain contains one or more mutations and/or deletions in the C-terminal region following the coiled-coil forming region such that, when incorporated into fibrin-homolog, the homolog lacks the ability to self-polymerize but has the ability to form non-covalent bonds, and thereby form mixed polymers useful as sealants, with fibrinogen. The invention also provides nucleotide sequences encoding fibrin chains or fibrin chain variants and cells expressing fibrin chains, fibrin chain variants, fibrin monomer, fibrin precursor or fibrinogen-analog. The invention further provides a method of forming fibrin-related proteins in vitro from their component fibrin chains. The invention additionally provides a method for forming a fibrin sealant by a reacting a first fibrin-related protein that is incapable of self-polymerizing with a second fibrin-related protein that is incapable of self-polymerizing. Fibrin chains produced by methods of the present invention may be used as sources of substantially pure starting material for the production of important fibrin-derived factors that regulate angiogenesis, platelet aggregation, and other physiological processes.
Owner:BRISTOL MYERS SQUIBB CO

Exogenous gene knocking-in and integrating system on basis of CRISPR/Cas9, method for establishing exogenous gene knocking-in and integrating system and application thereof

The invention provides an exogenous gene knocking-in and integrating system on the basis of CRISPR/Cas9, a method for establishing the exogenous gene knocking-in and integrating system and application thereof. The exogenous gene knocking-in and integrating system comprises vectors with report/donor functions and Cas9 expression vectors. Each report/donor vector comprises two target gent homologous arms and an exogenous sequence fragment positioned between the two target gene homologous arms; homologous sequences, which are positioned on a target gene, of the two target gene homologous arms of each report/donor vector are respectively positioned on two sides of a target sequence of the target gene and are connected with the target sequence of the target gene; the exogenous sequence fragments comprise promoters, resistant genes, shorn peptide sequences, report genes and polyA tails which are sequentially arrayed, two SSA repair homologous sequences of each resistant gene are inserted into the resistant gene, and the target sequence of each target gene is inserted in a space between the two corresponding SSA repair homologous sequences. The exogenous gene knocking-in and integrating system, the method and the application have the advantages that exogenous genes can be integrated with endogenous gene sequences in an efficient site-directed and accurately targeted manner, and double-chromosome allelic gene double-knocking-in can be efficiently carried out.
Owner:成都中科奥格生物科技有限公司

Novel elongase gene, and process for the preparation of polyunsaturated fatty acids

The invention relates to a novel elongase gene with the sequences stated in sequence SEQ ID NO:1, SEQ ID NO: 3, SEQ ID NO: 5 and SEQ ID NO: 7 or their homologs, derivatives or analogs, to a gene construct comprising this gene or its homologs, derivatives and analogs, and to its use. The invention also relates to vectors or transgenic organisms comprising an elongase gene with the sequence SEQ ID NO:1, SEQ ID NO: 3, SEQ ID NO: 5 and SEQ ID NO: 7 or its homologs, derivatives and analogs. The invention furthermore relates to the use of the elongase gene sequences alone or in combination with further elongases and / or further fatty acid biosynthesis genes. The present invention relates to a novel elongase gene with the sequence SEQ ID NO:1 or its homologs, derivatives and analogs.Furthermore, the invention relates to a process for the preparation of polyunsaturated fatty acids and to a process for introducing DNA into organisms which produce large amounts of oils and, in particular, oils with a high content of unsaturated fatty acids. Moreover, the invention relates to an oil and / or a fatty acid preparation with a higher content of polyunsaturated fatty acids with at least two double bonds and / or a triacylglycerol preparation with a higher content of polyunsaturated fatty acids with at least two double bonds.
Owner:BASF AG
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products