Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

417 results about "Ribozyme" patented technology

Ribozymes (ribonucleic acid enzymes) are RNA molecules that are capable of catalyzing specific biochemical reactions, similar to the action of protein enzymes. The 1982 discovery of ribozymes demonstrated that RNA can be both genetic material (like DNA) and a biological catalyst (like protein enzymes), and contributed to the RNA world hypothesis, which suggests that RNA may have been important in the evolution of prebiotic self-replicating systems. The most common activities of natural or in vitro-evolved ribozymes are the cleavage or ligation of RNA and DNA and peptide bond formation. Within the ribosome, ribozymes function as part of the large subunit ribosomal RNA to link amino acids during protein synthesis. They also participate in a variety of RNA processing reactions, including RNA splicing, viral replication, and transfer RNA biosynthesis. Examples of ribozymes include the hammerhead ribozyme, the VS ribozyme, Leadzyme and the hairpin ribozyme.

Tissue-specific and pathogen-specific toxic agents and ribozymes

InactiveUS6271359B1Rapidly and effectively expressedImprove stabilityVirusesSugar derivativesCancer cellBiology
The present invention relates to the discovery, identification and characterization of toxic agents which are lethal to pathogens and methods for targeting such toxic agents to a pathogen or pathogen infected cells in order to treat and/or eradicate the infection. In particular, the present invention relates to toxic agents which target bacteria at different stages of the bacterial life cycle, which are delivered alone or in combination to bacteria or bacteria-infected cells. The invention relates to toxic agents which are lethal to diseased cells and methods for targeting such toxic agents to a diseased cell in order to treat and/or eradicate the disease. The present invention relates to promoter elements which are pathogen-specific or tissue-specific and the use of such promoter elements to achieve pathogen-specific or tissue-specific expression of the toxic agent(s) and/or ribozyme(s) of the present invention. Specifically, the invention relates to the delivery of one or more toxic gene products, antisense RNAs, or ribozymes, or combination thereof. The invention provides a novel system by which multiple pathogenic targets may be simultaneously targeted to cause the death of a pathogen, or cell infected with a pathogen. Further, the invention has important implications in the eradication of drug-resistant bacterium and bacterial pathogens. The invention provides a novel system by which multiple targets may be simultaneously targeted to cause the death of a diseased cell. The invention also has important implications in the eradication of drug-resistant pathogens and drug-resistant diseased cells (such as cancer cells).
Owner:MUSC FOUND FOR RES DEV +1

Methods, compositions and systems for local delivery of drugs

Implantable medical device eluting drug locally and in prolonged period is provided, including several types of such a device, the treatment modes of implementation and methods of implantation. The device comprising of polymeric substrate, such as a matrix for example, that is used as the device body, and drugs, and in some cases additional scaffolding materials, such as metals or additional polymers, and materials to enhance visibility and imaging. The selection of drug is based on the advantageous of releasing drug locally and in prolonged period, where drug is released directly to the extracellular matrix (ECM) of the diseased area such as tumor, inflammation, degeneration or for symptomatic objectives, or to injured smooth muscle cells, or for prevention. One kind of drug is the gene silencing drugs based on RNA interference (RNAi), including but not limited to si RNA, sh RNA, or antisense RNA/DNA, ribozyme and nucleoside analogs. The modes of implantation in some embodiments are existing implantation procedures that are developed and used today for other treatments, including brachytherapy and needle biopsy. In such cases the dimensions of the new implant described in this invention are similar to the original implant. Typically a few devices are implanted during the same treatment procedure.
Owner:SILENSEED LTD

Compositions and methods for diagnosing and treating conditions, disorders, or diseases involving cell death

The present invention relates to compositions and methods for the treatment and diagnosis of conditions, disorders, or diseases involving cell death. The invention encompasses protective nucleic acids which, when introduced into a cell predisposed to undergo cell death or in the process of undergoing cell death, prevent, delay, or rescue the cell from death relative to a corresponding cell into which no exogenous nucleic acids have been introduced. The invention encompasses nucleic acids of the protective sequence, host cell expression systems of the protective sequence, and hosts that have been transformed by these expression systems, including transgenic animals. The invention also encompasses novel protective sequence products, including proteins, polypeptides and peptides containing amino acid sequences of the proteins, fusion proteins of proteins, polypeptides and peptides, and antibodies directed against such gene products. The invention further relates to target sequences, including upstream and downstream regulatory sequences or complete gene sequences, antibodies, antisense molecules or sequences, ribozyme molecules, and other inhibitors or modulators directed against such protective sequences, protective sequence products, genes, gene products, and / or their regulatory elements involved in cell death. The present invention also relates to methods and compositions for the diagnosis and treatment of conditions, disorders, or diseases, involving cell death, including, but not limited to, treatment of the types of conditions, disorders, or diseases, which can be prevented, delayed or rescued from cell death and include, but are not limited to, those associated with the central nervous system, including neurological and psychiatric conditions, disorders, or diseases, and those of the peripheral nervous system. Further, the invention relates to methods of using the protective sequence, protective sequence products, and / or their regulatory elements for the identification of compounds that modulate the expression of the protective sequence and / or the activity of the protective sequence product. Such compounds can be useful as therapeutic agents in the treatment of various conditions, disorders, or diseases involving cell death.
Owner:COGENT NEUROSCI

Methods for inhibiting macrophage colony stimulating factor and c-FMS-dependent cell signaling

Described herein are methods of inhibiting M-CSF activity, and, in particular, M-CSF/c-fms dependent cell signaling. In a first embodiment of the invention, one administers to a mammal viral vectors that deliver genes experessing antisense c-fms RNA; in a second embodiment, one induces in vivo production of a high-affinity soluble c-fms protein that competes for non-bound M-CSF; in a third embodiment, one administers a ribozyme-viral vector against c-fms mRNA; and in a fourth embodiment, one administers oligodeoxynucleotides that inhibit expression of c-fms gene product. The methods may be used to treat any disease in which M-CSF activity plays a role, and are particularly effective in treating and preventing atherosclerosis.
Embodiments of the present invention are directed primarily, but not exclusively, to a method for treating and preventing cardiovascular disease by inhibiting receptors to M-CSF. Other embodiments of the present invention include any and all biologic and/or pathobiologic phenomena mediated in whole or in part by M-CSF signaling through its receptor. Pathobiologic phenomena include, but are not limited to, disease entities such as osteoporosis, Alzheimer's disease, diabetes mellitus (Type 1 and/or Type 2), infectious diseases, cancer, and inherited disorders characterized by defects in one or more components in the M-CSF signaling pathway.
Owner:RAJAVASHISTH TRIPATHI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products