Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

31 results about "Most probable number" patented technology

The most probable number method, otherwise known as the method of Poisson zeroes, is a method of getting quantitative data on concentrations of discrete items from positive/negative (incidence) data. There are many discrete entities that are easily detected but difficult to count. Any sort of amplification reaction or catalysis reaction obliterates easy quantification but allows presence to be detected very sensitively. Common examples include microorganism growth, enzyme action, or catalytic chemistry. The MPN method involves taking the original solution or sample, and subdividing it by orders of magnitude (frequently 10× or 2×), and assessing presence/absence in multiple subdivisions.

Methods for detecting and quantifying specific probiotic microorganisms in animal feed

Methods and compositions are disclosed for confirming and quantifying the presence of a specific probiotic microorganism in a sample of animal feed. Hybridization and polymerase chain reaction (PCR) techniques are applied to identify the presence of the specific probiotic microorganism in cultures grown in most probable number and serial dilution methods, after calibration of the techniques using blank and control samples.
Owner:NUTRITION PHYSIOLOGY

Quantitative detection method of escherichia coli in soil and assay kit thereof

The invention discloses a quantiative detection method of escherichia coli in soil and an assay kit thereof. On the basis of taking related researches as reference, the method performs quantitative detection on pathogenic microorganism in the soil by adopting a method of combining MPN (most probable number) with PCR (polymerase chain reaction). By utilizing advantages of quickness and accuracy ofthe PCR method, biochemical identification, serological identification and other steps of positive results in the traditional MPN method are substituted, so that complex steps in a national standard method are reduced, the detection efficiency is improved, and a pre-enrichment step in the national standard method is adopted at the same time to improve the accuracy of detection targeting pathogenic bacteria; and due to the complexity of soil, the soil contains massive microorganisms, as well as various pathogenic microorganisms of different items, so that the targeting pathogenic bacteria is selectively cultured to improve the detection efficiency in order to quantitatively detect the targeting pathogenic bacteria better and more accurately. By virtue of creative effort of the inventor andscientific test verification, the sensitivity of the escherichia coli quantitative detection method in an experiment of adding pure bacteria in the soil is 25 per gram of soil.
Owner:NANJING AGRICULTURAL UNIVERSITY

Aflatoxin detection reagent kit based on loop-mediated isothermal gene amplification method

An aflatoxin detection reagent kit based on a loop-mediated isothermal gene amplification method is based on the basic principle of loop-mediated isothermal amplification (LAMP). The loop-mediated isothermal gene amplification method includes particular steps: preparing a culture medium of PDA (potato dextrose agar); cultivating strains; designing a loop-mediated isothermal gene amplification (LAMP) primer; extracting a fungus DNA (deoxyribose nucleic acid) template; and proportionally preparing, adding a PCR (polymerase chain reaction) tube and realizing water bath heat-insulation reaction, agarose gel electrophoresis and the like. The aflatoxin detection reagent kit is combined with a method (GB\T13092-2006) for detecting the total number of mold in feed, the concentration of selected fungus liquid is detected by an MPN (most probable number) method, and the aflatoxin detection reagent kit is prepared according to the method. When used for detecting aflatoxin fungi in the feed and food, the reagent kit is high in specificity and sensitivity, quick in detection and low in cost, can be used for detecting a plurality of samples at the same time, and is applicable to sanitation examination for primary-level feed and worthy of being widely popularized.
Owner:万俊松

Detection and counting method for relative content of microorganism

The invention relates to the technical field of microorganism detection, and particularly relates to a detection and counting method for the relative content of a microorganism. The method comprises the following steps: adding an oxidation-reduction indicator into a culture medium to obtain an indicator culture medium, wherein the color change interval of the oxidation-reduction indicator comprises three or more colors which can be easily recognized by naked eyes; diluting a sample to be detected, and culturing the diluted sample to be detected through the indicator culture medium, wherein multiple dilutions are used for the diluting operation, and multiple parallel samples are used for each dilution; reading the color or absorbency of the indicator culture medium during and / or the culturing operation; and obtaining the relative content of a microorganism in the sample to be detected according to the color change degree or absorbency change value of the indicator culture medium. Compared with the conventional MPN (most probable number) method, the method provided by the invention detects the relative contents of microorganisms in different samples more precisely and accurately; the comparability of the relative contents of microorganisms in different samples is higher; and the obtained data have favorable continuity. Thus, the method is wide in application range.
Owner:ADVANCED ENERGY & ENVIRONMENTAL TECH INC

Quantitative detection method for salmonellas in municipal surplus sludge

The invention relates to a quantitative detection method for salmonellas in municipal surplus sludge, belonging to the technical field of pathogenic bacterium detection of municipal surplus sludge in the biotechnology. The detection method comprises the following steps of: (1) carrying out gradient dilution of a sludge sample and bacterial enrichment cultivation; (2) carrying out selective enrichment cultivation; (3) separating and identifying a color developing culture medium; and (4) calculating by using MPN (Most Probable Number) counting software to obtain a result. The invention combines the MPN method and a salmonella detection method in the national standard of food safety, not only meets the requirement on the detection of salmonellas in the municipal surplus sludge, but also avoids interference of a large quantity of mixed bacteria in the sludge on the basis of obvious selectivity effect and is beneficial to the quick quantifying of the salmonellas. The invention has important theoretical values and actual guide meanings in the aspects of formulating and improving municipal surplus sludge treatment and application standards, and the like.
Owner:JIANGNAN UNIV

Quantitative detection method of salmonella in soil and assay kit thereof

The invention discloses a quantiative detection method of salmonella in soil and an assay kit thereof. On the basis of taking related researches as reference, the method performs quantitative detection on pathogenic microorganism in the soil by adopting a method of combining MPN (most probable number) with PCR (polymerase chain reaction). By utilizing advantages of quickness and accuracy of the PCR method, biochemical identification, serological identification and other steps of positive results in the traditional MPN method are substituted, so that complex steps in a national standard methodare reduced, the detection efficiency is improved, and a pre-enrichment step in the national standard method is adopted at the same time to improve the accuracy of detection targeting pathogenic bacteria; and due to the complexity of soil, the soil contains massive microorganisms, as well as various pathogenic microorganisms of different items, so that the targeting pathogenic bacteria is selectively cultured to improve the detection efficiency in order to quantitatively detect the targeting pathogenic bacteria better and more accurately. By virtue of creative effort of the inventor and scientific test verification, the sensitivity of the salmonella quantitative detection method in an experiment of adding pure bacteria in the soil is 250 per gram of soil.
Owner:NANJING AGRICULTURAL UNIVERSITY +1

Instant culture device for detecting flora by most probable number method

The invention relates to the field of flora detection, in particular to an instant culture device for detecting flora by a most probable number method. In the prior art, a reverse Durham tube is usedas a culture tube of an MPN method; the fermentation condition is judged by observing the gas generation in a small reverse tube, but the space of the culture tube is narrow and small; before use, theair in the small reverse tube is difficult to be completely eliminated. In order to solve the technical problems, the invention provides an instant fermentation culture tube for MPN. The culture tubecomprises a hard main tube and a hard gas generating tube which are connected through a bent connector; the sealed hard gas generating tube is used for replacing the built-in small reverse tube in the prior art and is not put into the fermentation tube, so that the limitation by the built-in tube diameter and the limitation by the reverse position are avoided; therefore the inner diameter of thehard gas generating collecting tube and the reverse angle selection freedom are increased; the tube line connection of the hard main tube and the hard gas generating collecting tube is more smooth; the gas exhaust is convenient; the advantages of high speed, high efficiency, time saving, labor saving and the like are realized.
Owner:济南市疾病预防控制中心

Rapid quantitative method for salmonellas in food based on MPN (most probable number) and PCR (polymerase chain reaction)

The invention discloses a novel and rapid quantitative method for salmonellas in food and related food samples. Based on the technical principle of MPN (most probable number) and PCR (polymerase chain reaction), the method includes the steps: firstly, performing gradient dilution for the food samples; taking multi-tube diluents from each dilution degree; performing non-selective increasing bacteria for the diluents; extracting DNA (deoxyribonucleic acid) of total bacteria of increasing bacteria samples; performing amplification for the DNA by the aid of specific salmonella primers; estimating pollution load of salmonellas in original samples according to the number of amplified positive tubes under different dilution degrees. The whole detecting process can be finished within two working days, the detection process can be effectively shortened, and workload is saved as compared with a traditional MPN (most probable number) method based on plate separation and biochemical confirmation. The method is simple and convenient, easy to operate, accurate in result and particularly applicable to rapid estimation of pollution dose or bacterium carrying level of the salmonellas in samples of fresh and cold food and the like in operations such as food safety risk assessment.
Owner:江西省疾病预防控制中心

Quantitative detection method of salmonella in soil and assay kit thereof

The invention discloses a quantiative detection method of salmonella in soil and an assay kit thereof. On the basis of taking related researches as reference, the method performs quantitative detection on pathogenic microorganism in the soil by adopting a method of combining MPN (most probable number) with PCR (polymerase chain reaction). By utilizing advantages of quickness and accuracy of the PCR method, biochemical identification, serological identification and other steps of positive results in the traditional MPN method are substituted, so that complex steps in a national standard methodare reduced, the detection efficiency is improved, and a pre-enrichment step in the national standard method is adopted at the same time to improve the accuracy of detection targeting pathogenic bacteria; and due to the complexity of soil, the soil contains massive microorganisms, as well as various pathogenic microorganisms of different items, so that the targeting pathogenic bacteria is selectively cultured to improve the detection efficiency in order to quantitatively detect the targeting pathogenic bacteria better and more accurately. By virtue of creative effort of the inventor and scientific test verification, the sensitivity of the salmonella quantitative detection method in an experiment of adding pure bacteria in the soil is 250 per gram of soil.
Owner:NANJING AGRICULTURAL UNIVERSITY +1

Key technology of agricultural product safe fresh keeping

The invention relates to the technical field of food production and processing, and particularly relates to a key technology of agricultural product safe fresh keeping. The technology comprises the following technological processes: material selecting, proportioning, rolling, subpackaging, boiling, sterilization, cooling, quick-freezing, packaging, and storage in warehouses. The technical indexes of the key technology are as below: a nutrient index: protein is 15 grams per 100 grams or above; microbe indexes: a total number of bacterial colonies is 70000 cfu (colony forming unit) per gram or less, and coliform groups is 110 MPN (most probable number) per 100 grams or less; physical and chemical indexes: lead is 0.45 milligram per kilogram or less, total mercury is 0.04 milligram per kilogram or less, and nitrite is 25 milligrams per kilogram or less; and safety: no preservative, no food additive, and shelf life of 60 days or above at the temperature of 0-4 DEG C. The technology of cooking at a proper temperature is stricter on the control of selected material quality, time and temperature so as to maintain the original taste and flavor of products. The products prepared by the technology are safe and nutritive, and the technology has excellent application prospects, social benefits and economic benefits.
Owner:苏州市妙意煮食品有限公司

Quantitative detection method of escherichia coli in soil and assay kit thereof

The invention discloses a quantiative detection method of escherichia coli in soil and an assay kit thereof. On the basis of taking related researches as reference, the method performs quantitative detection on pathogenic microorganism in the soil by adopting a method of combining MPN (most probable number) with PCR (polymerase chain reaction). By utilizing advantages of quickness and accuracy ofthe PCR method, biochemical identification, serological identification and other steps of positive results in the traditional MPN method are substituted, so that complex steps in a national standard method are reduced, the detection efficiency is improved, and a pre-enrichment step in the national standard method is adopted at the same time to improve the accuracy of detection targeting pathogenic bacteria; and due to the complexity of soil, the soil contains massive microorganisms, as well as various pathogenic microorganisms of different items, so that the targeting pathogenic bacteria is selectively cultured to improve the detection efficiency in order to quantitatively detect the targeting pathogenic bacteria better and more accurately. By virtue of creative effort of the inventor andscientific test verification, the sensitivity of the escherichia coli quantitative detection method in an experiment of adding pure bacteria in the soil is 25 per gram of soil.
Owner:NANJING AGRICULTURAL UNIVERSITY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products