Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

5222 results about "Position fixing" patented technology

Position fixing or positioning is the branch of navigation concerned with determining the position of a vehicle or person on the surface of the Earth. Positions may be expressed as a bearing and range from a known landmark or as an angles of latitude and longitude relative to a map datum.

Traffic management system for a passageway environment

The present invention provides a system for coordinating multiple vehicles in a passageway environment (e.g., in underground mines). The system includes methods and apparatus for determining the global position and orientation of a vehicle in said passageway environment, and methods for planning routes and monitoring the travels of multiple vehicles in said passageway environment. A global position and orientation estimation system employs one or more odometric sensors and one or more range sensing devices. It works in three basic steps. In the first step, it records and processes sensor data that is descriptive of the passageway environment by moving the system through said passageway environment. In the second step, it generates a globally consistent map of said passageway environment. Finally, real-time localization is provided by employing odometric sensors and range sensing devices to determine the system's global position and orientation with respect to said globally consistent map, both initially and as it travels through the passageway environment. A route planning method accepts higher-level goals for a set of multiple vehicles in said passageway environment and generates a route plan for each vehicle that minimizes the travel time for the group of vehicles, while at the same time avoiding collisions between vehicles. Route plans are sent to the vehicles for implementation and a monitoring method tracks the global positions and orientations of the vehicles and ensures that both safety and efficiency are maintained.
Owner:MACDONALD DETTWILER & ASSOC INC

GNSS and optical guidance and machine control

A global navigation satellite system (GNSS) and gyroscope control system for vehicle steering control comprising a GNSS receiver and antennas at a fixed spacing to determine a vehicle position, velocity and at least one of a heading angle, a pitch angle and a roll angle based on carrier phase position differences. The system also includes a control system configured to receive the vehicle position, heading, and at least one of roll and pitch, and configured to generate a steering command to a vehicle steering system. A vehicle control method includes the steps of computing a position and a heading for the vehicle using GNSS positioning and a rate gyro for determining vehicle attitude, which is used for generating a steering command. Relative orientations and attitudes between tractors and implements can be determined using optical sensors and cameras. Laser detectors and rangefinders can also be used.
Owner:AGJUNCTION

Charging system

An object of the present invention is to provide a charging system which carries out position confirmation of a moving body at a place where there is a radio wave blocked facility, and which carries out automatic detection of GPS antenna blockage for avoiding charging. In a charging system including a GPS positioning device 921 for recognizing a vehicle position, a vehicle speed pulse measuring device 920 for dead reckoning navigating, a monitor device 920, 927, 928 which generates information expressing a current position by using these, and a charging processing 902 which judges whether or not a recognized current position is within a charge area and which carries out data processing for charging, the monitor 920 includes a simple map database 928 which includes positions of facilities or geographical features at which GPS positioning is impossible, and when GPS positioning is impossible, the facility or geographical feature corresponding to the current position is detected, and that position is made to be a current position.
Owner:TOYOTA JIDOSHA KK +1

System for and method of detecting a collision and predicting a vehicle path

A collision detection and path prediction system (10) adapted for use with a traveling host vehicle (12) having an operator, includes a locator device (20) configured to determine the current position coordinates, and pluralities of trail and immediate dynamic path coordinates of the vehicle (12) and a communicatively coupled traveling remote vehicle (16). The system further includes a preferred controller (36) configured to predict a collision between the two vehicles (12,16) from the coordinates, and determine a plurality of projected path coordinates for the host vehicle (12) relative to the remote vehicle (16) trail coordinates.
Owner:GM GLOBAL TECH OPERATIONS LLC

Multi-antenna GNSS control system and method

A global navigation satellite sensor system (GNSS) and gyroscope control system for vehicle steering control comprising a GNSS receiver and antennas at a fixed spacing to determine a vehicle position, velocity and at least one of a heading angle, a pitch angle and a roll angle based on carrier phase position differences. The roll angle facilitates correction of the lateral motion induced position errors resultant from motion of the antennae as the vehicle moves based on an offset to ground and the roll angle. The system also includes a control system configured to receive the vehicle position, heading, and at least one of roll and pitch, and configured to generate a steering command to a vehicle steering system. The system includes gyroscopes for determining system attitude change with respect to multiple axes for integrating with GNSS-derived positioning information to determine vehicle position, velocity, rate-of-turn, attitude and other operating characteristics. A vehicle control method includes the steps of computing a position and a heading for the vehicle using GNSS positioning and a rate gyro for determining vehicle attitude, which is used for generating a steering command. Alternative aspects include multiple-antenna GNSS guidance methods for high-dynamic roll compensation, real-time kinematic (RTK) using single-frequency (L1) receivers, fixed and moving baselines between antennas, multi-position GNSS tail guidance (“breadcrumb following”) for crosstrack error correction, articulated implements with multiple antennas on each implement section, video input and guiding multiple vehicles and pieces of equipment relative to each other.
Owner:AGJUNCTION

Low Power Location Beacon

Embodiments provide an “always-on,” accurate, low power, and low cost solution for indoor positioning. The indoor positioning solution is enabled by one or more low power, low cost location beacons, which can be easily configured and installed in any indoor environment to support position determination. In an embodiment, the location beacons use a low power, low data rate wireless radio technology (e.g., Bluetooth Low Energy (BLE)), well suited for typical indoor ranges and data rates needed to support positioning. The location beacons may be rechargeable via ambient light and require no external power source. In addition, the location beacons benefit from a very cost efficient design, which allows for ubiquitous utilization of the enabled indoor positioning solution in a variety of indoor locations, public or private, small or large.
Owner:AVAGO TECH WIRELESS IP SINGAPORE PTE

Instrument, imaging position fixing system and position fixing method

InactiveUS20070282197A1Accurate and highly sensitive and simple fixingParticular accuracyUltrasonic/sonic/infrasonic diagnosticsSurgical needlesEngineeringUltimate tensile strength
The invention relates to an instrument able to be introduced into a body as well as an imaging position fixing system and position fixing method for the instrument. A magnet able to be rotated with a rotation drive is provided in an end section of the instrument. The position of the magnet in the body can be determined on the basis of the strength of a magnetic alternating field created by a rotation of the magnet.
Owner:SIEMENS AG

GNSS navigation solution integrity in non-controlled environments

Disclosed is a method for providing a Global Navigation Satellite System (GNSS) navigation position solution with guaranteed integrity in non-controlled environments, the method including processing a (GNSS) signal including multiple satellites generating at least one signal to obtain carrier phase and pseudorange measurements; pre-processing the measurements to detect and characterize local errors in the measurements, wherein the local errors cannot be ascertained a priori, the characterization including providing error bounds estimated by measuring the carrier phase and pseudoranges measurements, thereby providing a set of measurements rejections when the characterization is not possible; and using the estimated error bounds, together with error bounds provided by the GNSS signal concerning satellite and ionospheric errors, to build in each measurement an estimated noise level in the measurements as input to a weighted Receiver Autonomous Integrity Monitoring (RAIM) algorithm in order to compute position coordinates and associated protection levels in the non-controlled environments.
Owner:GMV AEROSPACE & DEFENCE

GNSS guidance and machine control

A global navigation satellite sensor system (GNSS) and gyroscope control system for vehicle steering control comprising a GNSS receiver and antennas at a fixed spacing to determine a vehicle position, velocity and at least one of a heading angle, a pitch angle and a roll angle based on carrier phase position differences. The roll angle facilitates correction of the lateral motion induced position errors resultant from motion of the antennae as the vehicle moves based on an offset to ground and the roll angle. The system also includes a control system configured to receive the vehicle position, heading, and at least one of roll and pitch, and configured to generate a steering command to a vehicle steering system. The system includes gyroscopes for determining system attitude change with respect to multiple axes for integrating with GNSS-derived positioning information to determine vehicle position, velocity, rate-of-turn, attitude and other operating characteristics. A vehicle control method includes the steps of computing a position and a heading for the vehicle using GNSS positioning and a rate gyro for determining vehicle attitude, which is used for generating a steering command. Alternative aspects include multiple-antenna GNSS guidance methods for high-dynamic roll compensation, real-time kinematic (RTK) using single-frequency (L1) receivers, fixed and moving baselines between antennas, multi-position GNSS tail guidance (“breadcrumb following”) for crosstrack error correction, guiding multiple vehicles and pieces of equipment relative to each other and earth-moving equipment and method applications.
Owner:AGJUNCTION

Method and device for tracking weak global navigation satellite system (GNSS) signals

A Global Navigation Satellite System (GNSS) receiver and associated method capable of tracking weak GNSS signals from a plurality of GNSS satellites. In a preferred embodiment, code and carrier tracking loops are initially closed around the code phase, carrier frequency, and data bit edge estimates handed over from an acquisition mode. In subsequent tracking, early, prompt, and late copies of the code replica are correlated with the incoming signal. The prompt correlations are coherently integrated over an extended updating interval for data bit edge and sign estimation as well as for carrier phase and frequency error discrimination whereas the early and late correlations are used for code error discrimination. Code delay and carrier phase and frequency errors are used to update the code and carrier tracking loop filters. Together with data bits, they form observables of a GNSS signal's time and frequency parameters for timing and position fixing.
Owner:CSR TECH HLDG

System and method for interactive selection of agricultural vehicle guide paths through a graphical user interface other than moving the vehicle

A system and method provide for precision guiding of agricultural vehicles along a series of adjacent paths to form rows for cultivating a field. In one aspect of the invention the vehicle is moved along a first path while receiving positioning information from a navigational system (e.g., RTK GPS). This positioning information is stored in a processor and is used by the processor to compute a second path adjacent to said first path by calculating piecewise perpendicular offsets from the first path at multiple locations along the first path. The process is repeated to compute a third and subsequent paths so as to cover the field. Because of the offset process, the field may be covered with paths that have varying curvature along their length, while providing substantially no gaps or overlaps in the coverage of the field. In another aspect of the invention, the system may propose alternative paths and the user can intervene by steering the vehicle or using a graphical user interface to select among the alternative paths. A still further aspect of the invention allows for the recording of the paths that provide coverage of a field in the form of a template. This template can then be used to cause the vehicle to automatically steer along a previously calculated path in subsequent operations on the field, and in subsequent years.
Owner:NOVARIANT

Microminiature personal combined navigation system as well as navigating and positioning method thereof

InactiveCN102445200AReduce electromagnetic interferenceSuitable for personal portabilityNavigation instrumentsAccelerometerGyroscope
The invention discloses a microminiature personal combined navigation system as well as a navigating and positioning method thereof. The system is composed of a subsystem installed on the foot part of a human body and a subsystem installed on the trunk position, wherein the subsystem installed on the foot part comprises an MEMS IMU (Micro-electromechanical Systems Inertial Measurement Unit), a magnetometer and a communication module; and the subsystem installed on the trunk position comprises a satellite navigation receiver, a Doppler velometer, an atmospheric pressure altimeter, a communication module and a microminiature navigation computer. The positioning method comprises the following steps of: collecting the MEMS IMU signal; modeling and correcting the random error of a gyroscope and an accelerometer; initially aligning an MEMS inertial navigation system; resolving strapdown inertial navigation, and correcting zero speed; carrying out combined navigation of the MEMS inertial navigation system / satellite navigation receiver / the Doppler velometer / the magnetometer / and the atmospheric pressure altimeter; and displaying the navigation result in real time. The microminiature individual combined navigation system is convenient to individually carry, individual real-time gesture fixing, velocity measurement and positioning can be realized, and whole and precise real-time navigation positioning information can be provided for pedestrians, operating personnel, soldiers, rescue workers and the like in the complex electromagnetic environment.
Owner:NANJING UNIV OF SCI & TECH

System for autonomous vehicle navigation with carrier phase DGPS and laser-scanner augmentation

A horizontal navigation system aided by a carrier phase differential Global Positioning System (GPS) receiver and a Laser-Scanner (LS) for an Autonomous Ground Vehicle (AGV). The high accuracy vehicle navigation system is highly demanded for advanced AGVs. Although high positioning accuracy is achievable by a high performance RTK-GPS receiver, the performance should be considerably degraded in a high-blockage environment due to tall buildings and other obstacles. The present navigation system is to provide decimetre-level positioning accuracy in such a severe environment for precise GPS positioning. The horizontal navigation system is composed of a low cost Fiber Optic Gyro (FOG) and a precise odometer. The navigation errors are estimated using a tightly coupled Extended Kalman Filter (EKF). The measurements of the EKF are double differenced code and carrier phase from a dual frequency GPS receiver and relative positions derived from laser scanner measurements.
Owner:AUTO TECH GRP LLC

Geophysics-based method of locating a stationary earth object

A geophysics-based method for determining the position of a stationary earth object uses the periodic changes in the gravity vector of the earth caused by the sun- and moon-orbits. Because the local gravity field is highly irregular over a global scale, a model of local tidal accelerations can be compared to actual accelerometer measurements to determine the latitude and longitude of the stationary object.
Owner:NAT TECH & ENG SOLUTIONS OF SANDIA LLC

One Touch Data Acquisition

A seismic spread has a plurality of seismic stations positioned over a terrain of interest and a controller programmed to automate the data acquisition activity. In one aspect, the present disclosure provides a method for forming a seismic spread by developing a preliminary map of suggested locations for seismic devices and later forming a final map having in-field determined location data for the seismic devices. Each suggested location is represented by a virtual flag used to navigate to each suggested location. A seismic device is placed at each suggested location and the precise location of the each placed seismic devices is determined by a navigation device. The determined locations are used to form a second map based on the determined location of the one or more of the placed seismic devices. Using the virtual flag eliminates having to survey the terrain and place physical markers and later remove those physical markers. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. (37 CFR 1.72(b)
Owner:INOVA

Automatic systems and methods for positioning marine seismic equipment

Systems and methods for automatic steering of marine seismic towing vessels are described. One system comprises a towing vessel, a seismic source, and optionally one or more seismic streamers towed by the towing vessel; a steering sub-system for steering the vessel, the sub-system including a vessel steering algorithm for calculating an optimum vessel steering path; and a controller to produce a difference between a measured position of a tracking point with a pre-plot position of the tracking point, and calculate a set point based on the difference to the steering algorithm. It is emphasized that this abstract is provided to comply with the rules requiring an abstract, allowing a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
Owner:REFLECTION MARINE NORGE AS

Public transport bus exact stop method based on standard line matching

The invention discloses an accurate public traffic positioning method based on standard line matching, which pertains to the filed of dynamic public traffic information collection and is applied to dynamic information release and dynamic scheduling. The traditional method adopts the method of difference, inertial navigation or adding road test equipment to improve the positioning precision, and the equipment cost is increased due to the adding of additional hardware modules. According to the deviation or loss rule of the urban public traffic vehicle-bone GPS collected data, by being combined with the public traffic operation characters and on the basis of not increasing the equipment cost, the invention effectively improves the accuracy of the GPS positioning by being matched with the GIS public traffic line map data with the shape points of high density. The method firstly generates the GIS public traffic line map data with the shape points of high density and accurate stop positions so that the map data is taken as a reference to be used as the foundation for correcting the deviation and filling up the lost data, and matches the real-time collected data with the map data to obtain the precise position information, thus meeting the requirement of public traffic positioning. The method can also be applied to the problem of correcting other positioning information with fixed lines.
Owner:BEIJING UNIV OF TECH

System for determining the heading and/or attitude of a body

A system for determining the heading and / or attitude of a body receives radio waves from a plurality of position-fixing satellites using at least three antennas fixedly mounted at different positions of the body. To reliably obtain integer ambiguity solutions of carrier phases of the radio waves in a shorter time, the system directly determines integer ambiguities from attitude angle data obtained by an IMU attitude processing section when the integer ambiguities are to be redetermined in the event of an interruption of the received radio waves or a change in the combination of satellites to be used. This system provides a user with highly accurate uninterrupted heading and / or attitude angle information.
Owner:FURUNO ELECTRIC CO LTD

Self-contained/interruption-free positioning method and system thereof

A self-contained / interruption-free earth's surface positioning method and system, carried by a user on the earth's surface, includes an inertial measurement unit, a north finder, a velocity producer, an altitude measurement device, a GPS (Global Positioning System) receiver, a data link, a navigation processor, a wireless communication device, and a display device and map database. Output signals of the inertial measurement unit, the velocity producer, altitude measurement device, the GPS receiver, the data link, and the north finder are processed to obtain highly accurate position measurements of the user. The user's position information can be exchanged with other users through the wireless communication device, and the location and surrounding information can be displayed on the display device by accessing a map database with the user position information.
Owner:AMERICAN GNC

Production method of navigation template for positioning the pediculus arcus vertebrae

The invention relates to a method for fabricating a navigation templet used in pedicle positioning, including the following steps: firstly, collecting the original data and building up a three-dimensional vertebra model; wherein focusing on the location of a pedicle (1); then, conducting three-dimensional analysis to a screw entry passage of the pedicle and building up a virtual screw entry templet(3) which includes the screw entry passage(2); wherein the screw entry templet(3) is a reverse navigation templet which matches with the outline of the rear part of a vertebral lamina; and then, fabricating the reverse navigation templet through quick molding technique. The increases of CT or MRI scanning velocity and precision provide a precise sectional image for acquiring a three-dimensional model in reverse engineering, and the necessary organs can be quickly reconstructed through a three-dimensional reconstruction software and can be transformed and bored freely on the virtual model so as to figure out an optimal pedicle screw entry route. On the basis of the virtual model, the pedicle screw entry direction and depth can be guided by using the reverse navigation templet fabricated through quick molding technique during an operation so as to quickly and accurately finish the operation.
Owner:陆声

Positioning method and system based on safe driving map and binocular recognition of traffic signs

The invention provides a positioning method and system based on a safe driving map and binocular recognition of traffic signs. Primary positioning of a running vehicle is carried out via the positioning system by means of a high-precision map. Meanwhile, images of the part in front of the vehicle are acquired, and traffic signs in the images are detected and identified. Coordinates of the traffic signs are recognized and obtained in the high-precision map, the distance between the vehicle and the signs are measured, and the position of the vehicle is calculated by comparing the coordinates of the traffic signs. In this way, the vehicle is positioned. By means of the invention, on the basis of traditional navigation data, acquisition of road traffic signs is added, roads signs are adopted to help positioning vehicles, the distance between vehicles and traffic signs is measured according to coordinates and sizes of signs which are recognized by left and right cameras, and vehicle positions are calculated according to spatial coordinates of traffic signs which are already stored in the high-precision map, so that submeter-level coordinate positioning is provided and a lane-based topology network is established.
Owner:WUHAN KOTEI TECH CORP

Apparatus and methods for driftless attitude determination and reliable localization of vehicles

In order to determine positional information, about a mobile robot, Real Time Kinematic (RTK) Global Satellite Navigation System (GNSS) measurement data are obtained by at least two GNSS receivers mounted on the mobile robot. Estimates of the covariance matrices of the measurement data are computed. The RTK GNSS measurement data are combined according to the covariance matrices to obtain enhanced positional information. The results may be fused with data from an IMU to obtain driftless attitude and / or localization information.
Owner:CANADIAN SPACE AGENCY

Autonomous mobile device

An electronic controller defining an autonomous mobile device a self-location estimation unit to estimate a self-location based on a local map that is created according to distance / angle information relative to an object in the vicinity and the travel distance of an omni wheel, an environmental map creation unit to create an environmental map of a mobile area based on the self-location and the local map during the guided travel with using a joystick, a registration switch to register the self-location of the autonomous mobile device as the position coordinate of the setting point when the autonomous mobile device reaches a predetermined setting point during the guided travel, a storage unit to store the environmental map and the setting point, a route planning unit to plan the travel route by using the setting point on the environmental map stored in the storage unit, and a travel control unit to control the autonomous mobile device to autonomously travel along the travel route.
Owner:MURATA MASCH LTD

Underground space high-precision positioning method based on laser scanning and sequence encoded graphics

InactiveCN102053249AMeet the application requirements of fast and high-precision positioningPhotogrammetry/videogrammetryElectromagnetic wave reradiationLaser scanningEngineering
The invention discloses an underground space high-precision positioning method based on laser scanning and sequence encoded graphics. Aiming at the rapid high-precision positioning, orientation, altitude determination and navigation of moving targets in a GPS signal-free underground well of a mine, the method can make the breakthrough in key directions from the design, decoding and optimized layout of the encoded graphics, the economical and rapid acquisition of a fine and accurate road network-a three-dimensional well network space model consisting of underground tunnels of mine, a high-precision positioning algorithm of the moving targets in well restraint spaces (precise resolving of position, direction, altitude parameters), a three-dimensional well network space matching algorithm, athree-dimensional navigation technology to a final navigation platform and terminal control system, and the like, thus key technologies for underground rapid high-precision positioning and navigationas well as software and hardware systems are formed to eventually achieve the leaping-development of a underground unmanned mining technology for the mine in our country. Besides, the method disclosed in the invention can also meet the application demands of large urban underground space, deep and long traffic tunnel, large grotto, large building interior, large overpass and subway space on the rapid high-precision positioning and navigation of the moving targets, thereby pushing forward the development of the underground space positioning technology in our country.
Owner:吴立新 +1

Carrier phase-based relative positioning apparatus

A carrier phase-based relative positioning apparatus comprises a plurality of antennas of which at least one is installed on a mobile unit. The apparatus determines the position of each antenna other than one antenna used as a reference antenna relative to the reference antenna by receiving radio signals transmitted from a plurality of position-fixing satellites with the multiple antennas, observing a single difference phase or a double difference phase, and calculating an integer ambiguity of the single difference phase or the double difference phase. The apparatus judges that the integer ambiguity has been incorrectly determined if the position of any of the antennas relative to the reference antenna (or the angle of a flat plane formed by those two antennas) falls out of a preset range in which the relative position (the angle of the flat plane) falls under normal conditions.
Owner:FURUNO ELECTRIC CO LTD

Attitude angle detecting apparatus

An attitude angle detecting apparatus receives radio waves transmitted from a plurality of position-fixing satellites with multiple antennas located at specific positions of a mobile unit, determines relative positions of the antennas and detects the heading and attitude of the mobile unit by determining carrier phase ambiguities quickly and accurately. When it is needed to redetermine integer ambiguities after recovery from an interruption of the radio waves from the position-fixing satellites or as a result of a change in combination of the position-fixing satellites, for example, the attitude angle detecting apparatus redetermines the integer ambiguities by using attitude angles and an attitude angle error covariance obtained from previous observation. This enables the attitude angle detecting apparatus to uninterruptedly obtain information on the heading and attitude of the mobile unit.
Owner:FURUNO ELECTRIC CO LTD

System and method for terrain feature tracking

System and method for tracking obstacles by an autonomous vehicle. Localization sensors (i.e., sensors to measure pitch, roll, and yaw, and systems including an inertial navigation system, a compass, a global positioning system, or an odometer) detect the position of the vehicle. Perception sensors (e.g., LIDAR, stereo vision, infrared vision, radar, or sonar) assess the environment about the vehicle. Using these sensors, locations of terrain features relative to the vehicle are computed and kept up-to-date. The vehicle trajectory is adjusted to avoid terrain features that are obstacles in the path of the vehicle.
Owner:IROBOT CORP

Method for In-Cab Driver Operation

A method for transporting cargo using a truck is provided. Preferably, the method is used in connection with full truckload operations. The method generally includes powering up a communications module residing within a cab of the truck. The communications module comprises a vehicle navigation system, a modem for receiving telecommunications signals, a processing unit for associating instructions for cargo delivery locations with geo-positioning coordinates, and a user interface. The method further includes receiving a cargo delivery data set at the communications module. The data set is sent from a host trucking management system. The data set provides at least a first cargo delivery location for the driver. The method then includes the driver acknowledging receipt of the first cargo delivery location through the user interface. Acknowledgment of receipt of the first cargo delivery location causes a signal to be sent from the communications module to the host trucking management system. The method also includes driving the truck and cargo to the first cargo delivery location. Upon arrival, the host trucking management system is informed. This is done by sending a first arrival signal from the communications module.
Owner:U S XPRESS INC

Navigated drill guided resection block

A bone cutting guide block has a cutting tool guide surface and a navigation mount for a navigation tracker component for computer aided positioning of the guide for a resection procedure. In various embodiments, the guide includes a rotation means. Preferably, a swivel with a pivot apparatus is provided to limit rotation to permit controlled flexion-extension angle about the pivot with respect to the cutting guide surface. A fixing member through the swivel permits for varus-valgus adjustment of the guide surface. Optionally, a positioning actuator and / or biased resistance actuator implements more regulated flexion-extension angle adjustment with the swivel. Various traversing mechanisms, such as a threaded wheel or pivoted cam tool permit controlled proximal-distal adjustment of the cutting guide surface.
Owner:HOWMEDICA OSTEONICS CORP

Autonomous parking system and method based on multi-vision inertial navigation integration

ActiveCN107600067AAccurate real-time location informationStable real-time location informationGeolocationEngineering
The invention discloses an autonomous parking system based on multi-vision inertial navigation integration. The autonomous parking system comprises a binocular vision SLAM module, a round looking parking detection module and a decision and control module, wherein the binocular vision SLAM module is used for generating a parking lot simulating map by acquired parking lot images through the multi-vision inertial navigation integration, obtaining real-time positioning information of a vehicle under a coordinate system of the parking lot simulating map, and transmitting the real-time positioning information to the decision and control module; the round looking parking detection module is used for acquiring current position data of the vehicle for current environmental distinction detection, and transmitting the testing result to the decision and control module; and the decision and control module is used for making a vehicle autonomous parking strategy according to the received geographicpositioning information of the vehicle in the parking lot simulating map and the current environmental distinction parameters. The invention also discloses an autonomous parking method based on the multi-vision inertial navigation integration. The autonomous parking method is used for realizing the autonomous parking system.
Owner:SUN YAT SEN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products