Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

157 results about "Redox mediator" patented technology

In DSC, the redox mediator, which can be a liquid or gel electrolyte or a solid hole conductor, plays the important role to regenerate the oxidized dye and transport the hole towards the cathode, where a catalyst (usually metallic platinum) regenerates the oxidized electrolyte or hole conductor, closing the circuit.

Small volume in vitro analyte sensor

A sensor designed to determine the amount and concentration of analyte in a sample having a volume of less than about 1 μL. The sensor has a working electrode coated with a non-leachable redox mediator. The redox mediator acts as an electron transfer agent between the analyte and the electrode. In addition, a second electron transfer agent, such as an enzyme, can be added to facilitate the electrooxidation or electroreduction of the analyte. The redox mediator is typically a redox compound bound to a polymer. The preferred redox mediators are air-oxidizable. The amount of analyte can be determined by coulometry. One particular coulometric technique includes the measurement of the current between the working electrode and a counter or reference electrode at two or more times. The charge passed by this current to or from the analyte is correlated with the amount of analyte in the sample. Other electrochemical detection methods, such as amperometric, voltammetric, and potentiometric techniques, can also be used. The invention can be used to determine the concentration of a biomolecule, such as glucose or lactate, in a biological fluid, such as blood or serum. An enzyme capable of catalyzing the electrooxidation or electroreduction of the biomolecule is provided as a second electron transfer agent.
Owner:ABBOTT DIABETES CARE INC

High sensitivity amperometric biosensor with side-to-side hybrid configuration

An amperometric glucose biosensor comprises a sensing electrode and a reference electrode arranged in a side-by-side parallel configuration on an electrically insulating sheet. A passive cover electrode is placed over the side-by-side sensing electrode and reference electrode so that the active surface of the passive cover electrode opposes the active surfaces of the side-by-side electrodes. Physical contact between the passive covering electrode and the side-by-side electrodes is prevented by insulating spacers. The sensing electrode comprises a conductive graphite track coated with a formulation comprising a redox mediator and enzyme and the reference electrode is a parallel track comprising an Ag / AgCl formulation while the passive cover electrode comprising a conductive graphite track coated with a formulation comprising the same redox mediator as used in the sensing electrode but not including an enzyme. An opening either located in the middle or at one side of the passive cover electrode allows a liquid test sample to be introduced into the sensor. The biosensor of the present invention exhibits a sensitivity and response time equal to or surpassing that of the simple face-to-face configuration while can be efficiently manufactured and permit use with conventional electrical connectors.
Owner:KS BIOMEDIX LTD

Preparation method of porous inorganic filling materials-fixed quinone compound

The invention discloses a preparation method of a porous inorganic filling materials-fixed quinone compound, belonging to the technical field of water treatment in environmental engineering. The method comprises the following steps of: selecting porous inorganic filling materials such as ceramsites, volcanics and the like; plating gamma-aluminum oxide on the surface of the materials; aminating, so that the surfaces of the porous inorganic filling materials contain a certain quantity of primary amidogen; putting the aminated materials into hydrochloric solution to have reaction for protecting the primary amidogen; and putting the reacted porous inorganic filling materials into sodium hydroxide solution, adding sulfonyl chloride group-containing anthraquinone compound which is dissolved in dichloromethane, and reacting for 6-10h under the room temperature to fix the water-soluble quinone compound. The quinone compound-containing macroporous polymer is applied to an anaerobic reactor to be capable of improving the biotransformation speed of an organic matter which is hardly degraded. The method covalently fixes the quinone compound on the macroporous polymer of a biologic carrier, so that the redox medium is easily contacted with the microbe, thereby overcoming the problem of the secondary pollution since the water-soluble quinone compound flows out with the water.
Owner:DALIAN UNIV OF TECH

Preparation method of porous inorganic filling materials-fixed quinone compound

The invention discloses a preparation method of a porous inorganic filling materials-fixed quinone compound, belonging to the technical field of water treatment in environmental engineering. The method comprises the following steps of: selecting porous inorganic filling materials such as ceramsites, volcanics and the like; plating gamma-aluminum oxide on the surface of the materials; aminating, so that the surfaces of the porous inorganic filling materials contain a certain quantity of primary amidogen; putting the aminated materials into hydrochloric solution to have reaction for protecting the primary amidogen; and putting the reacted porous inorganic filling materials into sodium hydroxide solution, adding sulfonyl chloride group-containing anthraquinone compound which is dissolved in dichloromethane, and reacting for 6-10h under the room temperature to fix the water-soluble quinone compound. The quinone compound-containing macroporous polymer is applied to an anaerobic reactor to be capable of improving the biotransformation speed of an organic matter which is hardly degraded. The method covalently fixes the quinone compound on the macroporous polymer of a biologic carrier, sothat the redox medium is easily contacted with the microbe, thereby overcoming the problem of the secondary pollution since the water-soluble quinone compound flows out with the water.
Owner:DALIAN UNIV OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products