Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

47results about How to "Increase fuel temperature" patented technology

Method of starting fuel cell system

Provided is a method of starting a polymer electrolyte membrane fuel cell (PEMFC) stack by rapidly increasing the temperature of the PEMFC stack. The PEMFC stack includes: a first flow line that is connected to upper parts of cooling plates installed in a plurality of unit cells of the PEMFC stack; a second flow line that is connected to lower parts of the cooling plates; a coolant reservoir installed between the first flow line and the second flow line; a heat exchanger installed between the first flow line and the coolant reservoir; a by-pass line that connects a point between the coolant reservoir and the second flow line, to the first flow line; a heating element that heats coolant in the by-pass line; a first valve installed between the first flow line and the heat exchanger; and a second valve that selectively connects the coolant reservoir, the second flow line, and the by-pass line. The method of starting a PEMFC stack includes: closing the first valve and controlling the second valve so that the second flow line and the by-pass line are connected to each other, and the coolant in the coolant reservoir is not connected to the second flow line and the by-pass line; and increasing the temperature of the PEMFC stack by heating the coolant in the by-pass line, using the heating element.
Owner:SAMSUNG ELECTRONICS CO LTD

Polyozometallates for use at elevated temperatures and pressures

The present invention relates to a redox fuel cell comprising an anode and a cathode separated by an ion selective polymer electrolyte membrane; means for supplying a fuel to the anode region of the cell; means for supplying an oxidant to the cathode region of the cell; means for providing an electrical circuit between the anode and the cathode; a non-volatile catholyte solution flowing in fluid communication with the cathode, the catholyte solution comprising a polyoxometallate redox couple being at least partially reduced at the cathode in operation of the cell, and at least partially re-generated by reaction with the oxidant in a regeneration zone after such reduction at the cathode, the catholyte solution further comprising one or more vanadium species that result from the speciation of the polyoxometallate at an elevated temperature and/or pressure, wherein the polyoxometallate is represented by the formula:
Xa[ZbMcOd]
wherein X is selected from hydrogen, alkali metals, alkaline earth metals, ammonium, transition metal ions and combinations of two or more thereof; Z is selected from B, P, S, As, Si, Ge, Ni, Rh, Sn, Al, Cu, I, Br, F, Fe, Co, Cr, Zn, H2, Te, Mn and Se and combinations of two or more thereof; M comprises vanadium and optionally one or more of Mo, W, Nb, Ta, Mn, Fe, Co, Cr, Ni, Zn Rh, Ru, TI, Al, Ga, In and other metals selected from the 1st, 2nd and 3rd transition metal series and the lanthanide series and combinations of two or more thereof; a is a number of X necessary to charge balance the [ZbMcOd] anion; b is from 0 to 20; c is from 1 to 40; d is from 1 to 180; X includes an amount of a non-hydrogen cation and the molar ratio of the non-hydrogen cation to vanadium is more than 0 and less than 1.
Owner:UNIVERSITY OF CHESTER
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products