Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

171 results about "Disease activity" patented technology

The concept of disease activity is useful for characterizing the current degree of severity and the progression of the disease. Disease activity has to be differentiated from disease severity, which is a concept encompassing much broader aspects of the disease process and its conse- quences.

Molecular flux rates through critical pathways measured by stable isotope labeling in vivo, as biomarkers of drug action and disease activity

The methods described herein enable the evaluation of compounds on subjects to assess their therapeutic efficacy or toxic effects. The target of analysis is the underlying biochemical process or processes (i.e., metabolic process) thought to be involved in disease pathogenesis. Molecular flux rates within the one or more biochemical processes serve as biomarkers and are quantitated and compared with the molecular flux rates (i.e., biomarker) from control subjects (i.e., subjects not exposed to the compounds). Any change in the biomarker in the subject relative to the biomarker in the control subject provides the necessary information to evaluate therapeutic efficacy of an administered drug or a toxic effect and to develop the compound further if desired. In one aspect of the invention, stable isotope-labeled substrate molecules are administered to a subject and the label is incorporated into targeted molecules in a manner that reveals molecular flux rates through one or more metabolic pathways of interest. By this method, a comparison between subjects and control subjects reveals the effects of the chemical entity or entities on the biomarkers. This, in turn, allows for the identification of potential therapeutic uses or toxicities of the compound. Combinations of compounds can also be systematically evaluated for complementary, synergistic, or antagonistic actions on the metabolic pathways of interest, using the methods of the present invention as a strategy for identifying and confirming novel therapeutic or toxic combinations of compounds.
Owner:RGT UNIV OF CALIFORNIA

Adjuvant immune therapy in the treatment of solid tumors through modulation of signaling pathways following engagement of humoral and cell mediated responses

The invention combines a novel combination with two especially important aspects: first, the invention proposes to simultaneously stimulate response in white blood cells and a patient's tumor cells with a mitogen-challenging compound, preferably a lectin, in the preferred mode the selected lectin being phytohemagglutin ("PHA"), and second, to generate heat shock protein. A method of treatment is set out. The method of manufacturing proposed utilizes a system calculated to better insure sterility and streamline production of the cytokine modulator. A method of testing in conjunction with the therapy is also claimed utilizing clinical assessment of disease activity, patient performance status, and quality of life questionnaire. Should efficacy of a treatment fall off, particularly because of mutation or adaption, the composition and method may be re- applied. The invention is not limited to humans, but is also applicable to mammals. The composition is usable as a stand-alone composition, but preferably is used in conjunction with standard therapy such as radiation, chemotherapy or surgery, particularly surgical therapy, and in conjunction with the administration of cystine, as later defined, to enhance immune system competency.
Owner:KINDNESS GEORGE +2

Genotoxicity as a biomarker for inflammation

The invention provides a method for detection of inflammatory disease in a subject that comprises assaying a test sample of peripheral blood from the subject for a marker of DNA damage. An elevated amount of marker present in the test sample compared to control sample is indicative of inflammatory disease activity, including sub-clinical inflammation. The method can be adapted for quantitatively monitoring the efficacy of treatment of inflammatory disease in a subject. Markers of DNA damage include single- and/or double-stranded breaks in leukocytes, oxidative DNA damage in leukocytes, or a marker of nitric oxide oxidative activity (protein nitrosylation in leukocytes). The inflammatory disease can be inflammatory bowel disease (ulcerative colitis or Crohn's disease). The invention may also be used for detection of other types of inflammatory disease, such as non-immune intestinal inflammatory disease (diverticulitis, pseudomembranous colitis), autoimmune diseases (rheumatoid arthritis, lupus, multiple sclerosis, psoriasis, uveitis, vasculitis), or non-immune lung diseases (asthma, chronic obstructive lung disease, and interstitial pneumonitis). This unexpected discovery of markers of genotoxicity present in circulating leukocytes enables detection of inflammation occurring at a localized site with a relatively simple and minimally invasive assay using peripheral blood.
Owner:RGT UNIV OF CALIFORNIA

Method for determining a predictive function for discriminating patients according to their disease activity status

The invention relates to a method for determining a predictive function for discriminating patients according to their disease activity status, comprising steps of: a—measuring values of biological markers for each patient of a first group of patients having a first known disease activity status, and for each patient of a second group of patients having a second known disease activity status, the measured values forming a dataset b—analyzing the dataset for identifying biological markers which are differentially expressed between the first group of patients and the second group of patients, c—among the biological markers identified at step b, determining correlated markers as markers which are correlated with other markers above a predetermined significance level, d—removing from the dataset, values measured for a biological marker identified as correlated marker, e—analyzing the dataset obtained at step d for determining a predictive function that predicts a disease activity status of a patient as a combination of values of biological markers, f—evaluating an accuracy index associated with the predictive function determined at step e, g—repeating steps d to f by selectively removing from the dataset, values measured for one or several biological marker(s) identified as correlated marker(s), so as to gradually decrease the number of biological markers in the combination of value until the accuracy index reaches an expected level.
Owner:CENT NAT DE LA RECHERCHE SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products