Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

35 results about "Retinal Neuron" patented technology

Method and apparatus for visual neural stimulation

Existing epiretinal implants for the blind are designed to electrically stimulate large groups of surviving retinal neurons using a small number of electrodes with diameters of several hundred μm. To increase the spatial resolution of artificial sight, electrodes much smaller than those currently in use are desirable. In this study we stimulated and recorded ganglion cells in isolated pieces of rat, guinea pig, and monkey retina. We utilized micro-fabricated hexagonal arrays of 61 platinum disk electrodes with diameters between 6 and 25 μm, spaced 60 μm apart. Charge-balanced current pulses evoked one or two spikes at latencies as short as 0.2 ms, and typically only one or a few recorded ganglion cells were stimulated. Application of several synaptic blockers did not abolish the evoked responses, implying direct activation of ganglion cells. Threshold charge densities were typically below 0.1 mC / cm2 for a pulse duration of 100 μs, corresponding to charge thresholds of less than 100 pC. Stimulation remained effective after several hours and at high frequencies. To demonstrate that closely spaced electrodes can elicit independent ganglion cell responses, we utilized the multi-electrode array to stimulate several nearby ganglion cells simultaneously. From these data we conclude that electrical stimulation of mammalian retina with small-diameter electrode arrays is achievable and can provide high temporal and spatial precision at low charge densities. We review previous epiretinal stimulation studies and discuss our results in the context of 32 other publications, comparing threshold parameters and safety limits.
Owner:SALK INST FOR BIOLOGICAL STUDIES +1

Microelectronic stimulator array for stimulating nerve tissue

The retinal prosthesis test device is comprised of a thin wafer of glass made from nanochannel glass (NGC) with very small channels perpendicular to the plane of the wafer filled with an electrical conductor forming microwires. One surface of the glass is ground to a spherical shape consistent with the radius of curvature of the inside of the retina. The NGC is hybridized to a silicon de-multiplexer and a video image is serially input to a narrow, flexible micro-cable and read into a 2-D array of unit cells in a pixel-by-pixel manner which samples the analog video input and stores the value as a charge on a MOS capacitor. After all unit cells have been loaded with the pixel values for the current frame, a biphasic pulse is sent to each unit cell which modulates the pulse in proportion to the pixel value stored therein. Because the biphasic pulses flow in parallel to each unit cell from a global external connection, the adjacent retinal neurons are all stimulated simultaneously, analogous to image photons stimulating photoreceptors in a normal retina. A permanent retinal implant device uses a NGC array hybridized to a silicon chip, the image is simultaneously generated within each cell through a photon-to-electron conversion using a silicon photodiode. The photons propagate directly through into the backside of the device. Electrical power and any control signals are transmitted through an inductively driven coil or antenna on the chip. The device collects the charge in storage capacitors via the photon-to-electron conversion process, stimulates the neural tissue with biphasic pulses in proportion to the stored charges, and resets the storage capacitors to repeat the process.
Owner:THE UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE NAVY

Method and Apparatus for Visual Neural Stimulation

Existing epiretinal implants for the blind are designed to electrically stimulate large groups of surviving retinal neurons using a small number of electrodes with diameters of several hundred μm. To increase the spatial resolution of artificial sight, electrodes much smaller than those currently in use are desirable. In this study we stimulated and recorded ganglion cells in isolated pieces of rat, guinea pig, and monkey retina. We utilized micro-fabricated hexagonal arrays of 61 platinum disk electrodes with diameters between 6 and 25 μm, spaced 60 μm apart. Charge-balanced current pulses evoked one or two spikes at latencies as short as 0.2 ms, and typically only one or a few recorded ganglion cells were stimulated. Application of several synaptic blockers did not abolish the evoked responses, implying direct activation of ganglion cells. Threshold charge densities were typically below 0.1 mC / cm2 for a pulse duration of 100 μs, corresponding to charge thresholds of less than 100 pC. Stimulation remained effective after several hours and at high frequencies. To demonstrate that closely spaced electrodes can elicit independent ganglion cell responses, we utilized the multi-electrode array to stimulate several nearby ganglion cells simultaneously. From these data we conclude that electrical stimulation of mammalian retina with small-diameter electrode arrays is achievable and can provide high temporal and spatial precision at low charge densities. We review previous epiretinal stimulation studies and discuss our results in the context of 32 other publications, comparing threshold parameters and safety limits.
Owner:SECOND SIGHT MEDICAL PRODS +1

An image enhancement method in a dark light environment

The invention discloses an image enhancement method in a dark light environment and belongs to the field of image processing. The problems of distorted representation result, blurred image contour andlow color saturation after enhancement seriously exist can be solved; The method comprises the following steps: extracting a brightness component V in an HSV in a dark light image, carrying out logarithmic transformation of global brightness, and carrying out overall brightness improvement on a low-illumination area in the dark light image; Obtaining neighborhood average brightness of pixel points in the current dark light image by using bilateral filtering under a receptive field three-Gaussian model of the retinal neurons; A function of extracting a local bright part from an image background is realized by utilizing top and bottom cap transformation processing, and then light and shade extraction and noise reduction are carried out on the image by utilizing top and bottom cap transformation; According to the method, the enhanced details of the dark-light color image can be well represented, the problem of non-uniform illumination distribution is solved, the overall contrast of the image is improved, the detail contour of the image is clear, and the color saturation is high.
Owner:HARBIN UNIV OF SCI & TECH

Method used for inducing differentiation of human multipotential stem cells into retinal progenitor cells

The invention belongs to the field of biomedicine, and specifically relates to a method used for inducing differentiation of human multipotential stem cells into retinal progenitor cells. According to the method, human embryonic stem cells or human induced multipotential stem cells are induced in a medium containing N2, and then are delivered into a retina induction medium containing neural basis culture medium, knockout serum replacement and nicotinamide so as to obtain the retinal progenitor cells. The method is capable of increasing differentiation rate of human multipotential stem cells into retinal progenitor cells; and the retinal progenitor cells obtained via differentiation can be used for transplantation therapy of irreversible degenerative diseases of retinal neurons, such as age-related macular degeneration and retinitis pigmentosa, and also can be used for iPS cells sourced from patients as cell models in drug screening and gene interference experiments. Compared with existing technology, small molecule compounds used in the method are less, so that influences caused by non-anthropogenic factors are avoided effectively, and yield of obtained optic cup-like cells is obviously higher than that of existing induced differentiation methods.
Owner:FUDAN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products