Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

39results about How to "Accelerate liquid flow" patented technology

Method and device for irrigation of body cavities

A pressure and a vision regulation method and device for irrigation of a body cavity (1), in which method an inflow liquid pump (2) pressurizes the irrigation liquid in a feed line (13) and in which an outflow device (3) or an external suction source (20) drains the irrigation liquid from the body cavity (1) through a tubing (16) into a waste container (17) and in which a control unit (4) controls either the inflow liquid pump (2) only or both the inflow liquid pump (2) and the outflow device (3) depending on an inflow irrigation liquid pressure from a pressure sensor (5), where the first control unit (4) compares the inflow irrigation liquid pressure and flow with pressures calculated to correspond to pressure in the body cavity for the respective flow for a nominal surgical site and that a matching between the calculated values and the inflow irrigation liquid pressures is made by altering the effect of either the inflow liquid pump (2) only or the inflow liquid pump (2) and/or the outflow device (3) and/or the shut off valve. The above-mentioned pressure registration method and the device for irrigation of a body cavity is combined with an method for detecting blood cells, red blood cells, haemoglobin and/or debris in liquid coming from a surgical site so an automatically control and rinsing system is achieved keeping a clear vision in the viewing area of the operational site.
Owner:TENNESSEE MEDICAL INNOVATIONS INC

Sprinkler or spray head

The invention relates to a sprinkler or a spray head comprising a housing (2), an inlet (3), a nozzle (4) mounted in the housing, a passage (17-18-13) from the inlet to the nozzle, and a holder (8) for a release means, the holder being mounted in front of the nozzle so that it prevents the nozzle from spraying extinguishing medium forward without hindrance, the nozzle being arranged to spray extinguishing medium once the release means has been released. The holder (8) is mounted in the housing (2) by means of a locking mechanism, which is arranged to open and release the holder (8) from the housing once the release means (7) has been released. To allow efficient and forceful spraying of the extinguishing medium without that the holder stands in the way, reducing the momentum and penetration force of the jet, and to safeguard the operation, the spinkler or spray head comprises a spindle (9) which is arranged to move in the housing (2) from a first position, in which the spindle is arranged to close the passage (17-18-13) to keep the nozzle (4) closed, to a second position, in which the spindle is arranged to open the passage to keep the nozzle open, when the release means is being released, the spindle being arranged to exert a force on the locking mechanism and to open the locking mechanism when the spindle is moved toward the holder (8) into the second position, whereby the nozzle (4) can forcefully spray the extinguishing medium forward essentially without hindrance.
Owner:MARIOFF CORP OY

Flow Meter System and Method for Measuring An Amount of Liquid in A Largely Gaseous Multiphase Flow

Both a flow meter system and method are provided for accurately measuring the percentage amounts of liquid and gas phases in a multiphase flow through a conduit when the liquid phase constitutes a small minority portion (e.g., less than about 20%) of the multiphase flow. The system includes a flow meter that includes a differential pressure sensor connected across a Venturi in the conduit, and a dual energy fraction meter, each of which is operably connected to a digital processor. The system further includes a pump connected to the conduit upstream of the flow meter that introduces at least one pulse of a known quantity of liquid, the pulse being sufficient in volume to temporarily increase the liquid phase by a detectable amount. After the liquid pulse is introduced into the multi-phase flow, the digital processor computes the changes in the percentage amounts of the liquid and gas phases which should have occurred as a result of the pulse, and compares the computed changes with the actual changes measured by the flow meter in order to calibrate the flow meter. The measured increase in the liquid flow is then subtracted from the total measured liquid flow to determine the actual percentage of liquid flow.
Owner:SCHLUMBERGER TECH CORP

Shred and shear pump

The present invention is a pump (100) used for applications where a solid (130) is present in wastewater and other liquids that requires cutting and reduction in size so as to pass the solid (130) through the inlet (105) to the outlet (106) of the pump (100). The pump (100) has a pump casing (104) with an inlet (105) and an outlet (106) formed therein. A drive unit (170) rotates a drive shaft (113) extending axially through the pump casing (104) to an impeller (109) and a cutter bar (102). The pump (100) is further configured with a radial cutter ring assembly (101) positioned adjacent the cutter bar (102) and the inlet (105) providing a shredding cutting action (140) of solids (145) between the rotating cutter bar (102) sliding past a radial cutter ring assembly (101) held stationary, e.g. cutting blades (160) formed in an edge (118) of the cutter bar (102) rotate across an internal surface (121) of the radial cutter ring assembly (101). The pump (100) also has an axial cutter ring assembly (103) with one or more blades (124) forming openings (126) adapted for the passage of solids (155) from the inlet (105) to the outlet (106) to provide a shearing cutting action (150) of solids (155) by a rotation of an upper surface (116) of the cutter bar (102) sliding past an axial cutting surface (153) of the blades (124) of the axial cutter ring assembly (103). The shred and shear pump (100) may be configured with a plurality of slots (128) on the internal surface (121) of the radial cutter ring assembly (101) to hold woven fibrous material for the shredding cutting action (140). The pump (100) also features improved optimized flow, cutting and reducing solids in the form of woven fibrous materials, and adjustability of the cutter housing (107) for precision and wear adjustment.
Owner:IND FLOW SOLUTIONS OPERATING LLC

Shred and shear pump

The present invention is a pump used for applications where a solid is present in wastewater and other liquids that requires cutting and reduction in size so as to pass the solid through the inlet to the outlet of the pump. The pump has a pump casing with an inlet and an outlet formed therein. A drive unit rotates a drive shaft extending axially through the pump casing to an impeller and a cutter bar. The pump is further configured with a radial cutter ring assembly positioned adjacent the cutter bar and the inlet providing a shredding cutting action of solids between the rotating cutter bar sliding past a radial cutter ring assembly held stationary, e.g. cutting blades formed in an edge of the cutter bar rotate across an internal surface of the radial cutter ring assembly. The pump also has an axial cutter ring assembly with one or more blades forming openings adapted for the passage of solids from the inlet to the outlet to provide a shearing cutting action of solids by a rotation of an upper surface of the cutter bar sliding past an axial cutting surface of the blades of the axial cutter ring assembly. The shred and shear pump may be configured with a plurality of slots on the internal surface of the radial cutter ring assembly to hold woven fibrous material for the shredding cutting action. The pump also features improved optimized flow, cutting and reducing solids in the form of woven fibrous materials, and adjustability of the cutter housing for precision and wear adjustment.
Owner:IND FLOW SOLUTIONS OPERATING LLC

Flow meter system and method for measuring an amount of liquid in a largely gaseous multiphase flow

Both a flow meter system and method are provided for accurately measuring the percentage amounts of liquid and gas phases in a multiphase flow through a conduit when the liquid phase constitutes a small minority portion (e.g., less than about 20%) of the multiphase flow. The system includes a flow meter that includes a differential pressure sensor connected across a Venturi in the conduit, and a dual energy fraction meter, each of which is operably connected to a digital processor. The system further includes a pump connected to the conduit upstream of the flow meter that introduces at least one pulse of a known quantity of liquid, the pulse being sufficient in volume to temporarily increase the liquid phase by a detectable amount. After the liquid pulse is introduced into the multi-phase flow, the digital processor computes the changes in the percentage amounts of the liquid and gas phases which should have occurred as a result of the pulse, and compares the computed changes with the actual changes measured by the flow meter in order to calibrate the flow meter. The measured increase in the liquid flow is then subtracted from the total measured liquid flow to determine the actual percentage of liquid flow.
Owner:SCHLUMBERGER TECH CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products