Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

46results about How to "Wide latitude" patented technology

Selective etching process for cutting amorphous metal shapes and components made thereof

InactiveUS7235910B2More size and shapeEasily accommodatedMaterial nanotechnologyInorganic material magnetismMagnetic corePeak value
A selective etching process cuts shapes from amorphous metal strip feedstock. The etching process comprises depositing a chemically resistant material to one side of the strip in a pattern that defines the requisite shape, mating the metal strip with a carrier strip, exposing at least one side of the metal strip to an etching agent to selectively etch the desired shape, and separating the shape from the strip feedstock. A plurality of layers of the shapes is assembled by adhesive lamination to form a generally polyhedrally shaped bulk amorphous metal magnetic component useful in high efficiency electric motors and inductive devices. The bulk amorphous metal magnetic component may include an arcuate surface, and preferably includes two arcuate surfaces that are disposed opposite to each other. The magnetic component is operable at frequencies ranging from about 50 Hz to about 20,000 Hz. When the component is operated at an excitation frequency “f” to a peak induction level Bmax, the component exhibits a core-loss less than about “L” wherein L is given by the formula L=0.005 f(Bmax)1.5+0.000012 f1.5(Bmax)1.6, said core loss, said excitation frequency and said peak induction level being measured in watts per kilogram, hertz, and teslas, respectively. Performance characteristics of the bulk amorphous metal magnetic component of the present invention are significantly better than those of silicon-steel components operated over the same frequency range.
Owner:METGLAS INC

Image-forming method and developer

The present invention provides a developer comprising at least one carbonate, at least one hydrogen carbonate and at least one alkali silicate, wherein the ratio of the total molar concentration “a” of the carbonate and the hydrogen carbonate to the molar concentration “b” of the SiO2 component present in the alkali silicate: “a/b” ranges from 1:0.3 to 1:2, the total molar concentration of “a” and “b”:“a+b” ranges from 0.1 to 2 mole/L, and the pH value thereof ranges from 9 to 13; and an image-forming method which comprises the steps of imagewise exposing a negative-working image-forming material which comprises a substrate provided thereon with an image-recording layer comprising an infrared light absorber, a polymerization initiator, an ethylenically unsaturated bond-containing monomer and a polymer binder, and then developing the imagewise exposed image-forming material with the foregoing developer. The developer and image-forming method can ensure sufficient developing properties or a satisfactory developing ability at a low pH wherein the image-forming material is hardly damaged. Accordingly, they permit the simultaneous achievement of good printing durability and a good developing ability of an image-forming material. Further, the developing activity of the developer is not hardly reduced due to the action of carbon dioxide and therefore, it does not suffer from a problem originated from the scum formed during development.
Owner:FUJIFILM CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products