Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

40 results about "Atomic mass unit" patented technology

The dalton or unified atomic mass unit (SI symbols: Da or u) is a unit of mass widely used in physics and chemistry. It is defined precisely as 1/12 of the mass of an unbound neutral atom of carbon-12 in its nuclear and electronic ground state and at rest. A mass of 1 Da is also referred to as the atomic mass constant and denoted by mᵤ.

Encapsulation of bulky fragrance molecules

The present invention relates to a fragrance composition to be incorporated into the core of a core shell capsule comprising:
    • I) 60-100% by weight of at least 5 fragrance compounds, 20-100% by weight of said fragrance compounds comprising at least 3 bulky molecules having a molecular weight of less than 325 atomic mass units, conforming to the following structures:
    • a) molecules containing more than one ring, each ring having between 3 and 8 atoms of any of carbon, oxygen, nitrogen or sulfur in any ring and atoms being shared by any of the rings;
    • b) molecules having at least two rings, each ring having between 3 and 8 atoms of any of carbon, oxygen, nitrogen or sulfur in which any rings share a common atom;
    • c) molecules having at least two rings, each ring having between 3 and 8 atoms of any carbon, oxygen, nitrogen or sulfur in which any two rings share at least two adjacent common atoms;
    • d) molecules containing a single alicyclic ring which contains at least 5 atoms, but no more than 8 atoms, of any of carbon, oxygen, nitrogen and sulfur in which at least one of the carbon atoms of the ring has two substituents, or a carbon atom alpha to the ring is tertiary carbon atom, or the ring has substituents on at least three of the atoms which make up the ring;
    • e) molecules containing at least one macrocyclic ring, which is a ring having more greater than eight atoms of any of carbon, nitrogen oxygen or sulfur in the ring;
    • f) molecules containing at least one substituted aromatic ring containing at least 5 atoms of any of carbon, oxygen, nitrogen or sulfur, but in which at least one substituents has a tertiary carbon in a position alpha or beta to the ring;
    • g) molecules containing a substituted aromatic ring comprising at least 5 atoms with at least 3 substituents groups on the ring all of which must contain at least 2 atoms from among carbon, oxygen, nitrogen or sulfur; and
    • II) 0-40% by weight of pro-fragrances, solvents, and other benefit agents which possess any of the structural features a) to g) but are not constrained by the molecular weight restrictions.
Owner:TAKASAGO INTERNATIONAL CORPORATION

Detector device for high mass ion detection, a method for analyzing ions of high mass and a device for selection between ion detectors

Described here is a detector for measuring heavy mass ions with high sensitivity and low saturation for time-of-flight mass spectrometry and a detector housing for selecting between multiple detectors. It relates to sensitive measuring methods of large masses in the range of about ten thousand to a few million atomic mass units. Specifically it relates to a conversion dynode in a specifically insolated geometry followed by a discrete dynode secondary electron multiplier specifically modified to decrease electron saturation and electronic ringing. Conversion dynode detectors have been used before for time-of-flight mass spectrometry and compared to direct detection with electron multipliers they exhibit superior sensitivity for high-mass, slow-moving macromolecular ions. Using a conversion dynode specifically insolated to a common ground plane has the added capabilities of allowing an increased voltage to be applied to the conversion dynode while maintaining a minimum distance between the conversion dynode and the front of the electron multiplier. This creates faster ion flight time for the secondary ions produced within the detector allowing for higher time resolution and sensitivity from the detector. Also, by adding capacitance as charge buffers to the last few electrodes of a discrete dynode electron multiplier used as a secondary electron multiplier, saturation can be greatly reduced or avoided, which is often a major problem when measuring samples with ions covering a broad mass range. The detector housing described allows multiple detectors to be selected without breaking the vacuum. By keeping all moving mechanical parts inside the vacuum, a more simple, robust and cost effective design can be realized which provides a platform for measuring ions using different detector designs.
Owner:COVALX

Method for producing a reagent to decrease hydrodynamic resistance of turbulent flow of liquid hydrocarbons in pipelines

The invention relates to inorganic and polymer chemistry, and more specifically to the transport of oil and petroleum products via pipelines. A method for producing a reagent to decrease hydrodynamicflow resistance of liquid hydrocarbons in pipelines comprises polymerization of alpha-olefins C6-C14 in the presence of a catalyst and a catalyst activator. Furthermore, the polymerization of alpha-olefins C6-C14 is performed in a monomer medium with the addition of 0.1 to 5 mass percent of saturated alicyclic hydrocarbon composition C8-C32 and a saturated aliphatic hydrocarbon composition C6-C18with monomer conversion of 96.0 to 99.5 mass percent, wherein microspherical titanium trichloride is used as the catalyst, and a mixture of diethylaluminum chloride and triisobutylaluminum in a mass ratio of 1:10 to 10:1 is used as the catalyst activator. A polymer is then produced with a molecular mass of more than 107 amu with a narrow molecular mass distribution of no more than 1.5 with the specified component ratio. The polymer is then ground, thereby obtaining the commodity form of the reagent for decreasing hydrodynamic flow resistance of liquid hydrocarbons in pipelines. The technical result of the invention consists in producing a reagent that provides a decrease in the hydrodynamic resistance of the flow of liquid hydrocarbons in pipelines and, as a result, increases the throughput capacity of a pipeline and decreases the cost of transport.
Owner:OBSHCHESTVO S OGRANICHENNOJ OTVETSTVENNOSTJU MIRRIKO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products