Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

46 results about "Inhibitor protein" patented technology

The inhibitor protein (IP) is situated in the mitochondrial matrix and protects the cell against rapid ATP hydrolysis during momentary ischaemia. In oxygen absence, the pH of the matrix drops. This causes IP to become protonated and change its conformation to one that can bind to the F1Fo synthetase and stops it thereby preventing it from moving in a backwards direction and hydrolyze ATP instead of make it. When oxygen is finally incorporated into the system, the pH rises and IP is deprotonated. IP dissociates from the F1Fo synthetase and allows it to resume its ATP synthesis.

Applications of tea double-chlorine carboxamide and tea double-bromine carboxamide or like in preparation of products for prevention and treatment of diseases such as cancer

The invention relates to the technical field of medical treatment. The tea double-chlorine carboxamide and tea double-bromine carboxamide are newly synthesized compounds which can inhibit growths and invasions of cancer cells such as lung cancer, breast cancer, liver cancer, stomach cancer, colon cancer, prostate cancer, pancreatic cancer, cervical cancer, lymphoma, leukemia, and melanoma, and can obviously inhibit the tumor growth and metastasis in the body, and the inhibition effect of the compound is better than that of an anticancer medicament; the mechanism of action involves a receptor which is closely related to down-regulation and inhibition of the growth, invasion and metastasis of a tumor, signal transduction and regulation protein and kinase levels and a binding of a nuclear factor and DNA (Deoxyribonucleic Acid), and up-regulation of factors such as tumor suppressor proteins and cell cycle inhibitor proteins simultaneously; double tea chlorine carboxamide and double tea chlorine carboxamide can directly inhibit activities of histone deacetylase and histone methyltransferase EZH2(Enhancer Of Zeste Homolog 2) and the binding of the inflammatory factor NF-kB and DNA, and the activities of tea double-chlorine carboxamide and tea double-bromine carboxamide are better than that of the clinical anti-cancer medicament. The invention provides new applications of tea double-chlorine carboxamide and tea double-bromine carboxamide and intermediate compounds in preventing and treating the diseases such as cancers, inflammation, cardiovascular and immune deficiencies.
Owner:YANTAI UNIV

Metastatic tumor deletion protein small-molecule cyclopeptide inhibitor as well as preparation method and application thereof

The invention provides metastatic tumor deletion protein small-molecule cyclopeptide, derivatives or salts thereof, a preparation method for the metastatic tumor deletion protein small-molecule cyclopeptide, the derivatives or salts thereof and an application of the metastatic tumor deletion protein small-molecule cyclopeptide, the derivatives or salts thereof in preparation of antitumor medicaments. The metastatic tumor deletion protein small-molecule cyclopeptide is low in molecular weight, high in stability and very low in toxicity and can enter cells through cell membranes to inhibit endocytosis of tumor cells and interfere morphologic change of the cell membranes and conduction of relevant antitumor signals by inhibiting dimerization of Mtss1 protein, so that cell proliferation and growth caused by tumor stimulating factors such as epidermal growth factors EGF, platelet derived growth factor PDGF or sonic hedgehog (shh) factors are weakened, wherein the in-vitro inhibition activity of nanomole-scale inhibitor-protein can remarkably inhibit the endocytosis of the cells after the inhibitor-protein is directly added into cell culture fluid without being transfected or packaged by lipidosome.
Owner:SOUTHEAST UNIV

Novel therapeutic and prophylactic agents and methods of using the same

InactiveUS20060078551A1Good anti-inflammatory activityGood potencyBacteriaPeptide/protein ingredientsPhospholipase inhibitorSnake bite venom
A phospholipase A2 inhibitor protein designated “Phospholipase Inhibitor from Python” (PIP)—formerly designated “Python Antitoxic Factor” (PAF)—is given by SEQ ID NO:2. The partial amino acid sequence for PIP was initially determined from the native protein purified from the blood serum of a non-venomous snake, Python reticulatus. The complete PIP polynucleotide sequence was obtained from a cDNA clone encoding PIP, given by SEQ ID NO:1, along with the full amino acid sequence deduced from it. Also disclosed is a recombinant protein PIP, which shows strong lethal toxin neutralizing activity similar to the native PIP, and has potent anti-inflammatory activity. Both the native and the functionally equivalent recombinant PIP are useful for the prevention or treatment of conditions such as snakebites, insect stings, and inflammatory diseases. Also, phospholipase A2 (PLA2) inhibitory polypeptides designated P-0029, P-0009, and P-0006, the sequences of which are given as SEQ ID NO:10, SEQ ID NO:11, and SEQ ID NO:12, respectively, are disclosed. Those polypeptides, and their synthetic chemical analogues and polypeptide variants that inhibit PLA2 activity and alleviate inflammation, may also be used in the diagnosis, study, prevention, and treatment of PLA2-related human inflammatory diseases.
Owner:NAT UNIV OF SINGAPORE

Therapeutic and prophylactic agents and methods of using same

A phospholipase A2 inhibitor protein designated “Phospholipase Inhibitor from Python” (PIP)—formerly designated “Python Antitoxic Factor” (PAF)—is given by SEQ ID NO:2. The partial amino acid sequence for PIP was initially determined from the native protein purified from the blood serum of a non-venomous snake, Python reticulatus. The complete PIP polynucleotide sequence was obtained from a cDNA clone encoding PIP, given by SEQ ID NO:1, along with the full amino acid sequence deduced from it. Also disclosed is a recombinant protein PIP, which shows strong lethal toxin neutralizing activity similar to the native PIP, and has potent anti-inflammatory activity. Both the native and the functionally equivalent recombinant PIP are useful for the prevention or treatment of conditions such as snakebites, insect stings, and inflammatory diseases. Also, phospholipase A2 (PLA2) inhibitory polypeptides designated P-0029, P-0009, and P-0006, the sequences of which are given as SEQ ID NO:10, SEQ ID NO:11, and SEQ ID NO:12, respectively, are disclosed. Those polypeptides, and their synthetic chemical analogues and polypeptide variants that inhibit PLA2 activity and alleviate inflammation, may also be used in the diagnosis, study, prevention, and treatment of PLA2-related human inflammatory diseases.
Owner:NAT UNIV OF SINGAPORE
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products