Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

69 results about "Moraxella catarrhalis" patented technology

Moraxella catarrhalis is a fastidious, nonmotile, Gram-negative, aerobic, oxidase-positive diplococcus that can cause infections of the respiratory system, middle ear, eye, central nervous system, and joints of humans. It causes the infection of the host cell by sticking to the host cell using trimeric autotransporter adhesins.

Specific and universal probes and amplification primers to rapidly detect and identify common bacterial pathogens and antibiotic resistance genes from clinical specimens for routine diagnosis in microbiology laboratories

The present invention relates to DNA-based methods for universal bacterial detection, for specific detection of the common bacterial pathogens Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Staphylococcus saprophyticus, Streptococcus pyogenes, Haemophilus influenzae and Moraxella catarrhalis as well as for specific detection of commonly encountered and clinically relevant bacterial antibiotic resistance genes directly from clinical specimens or, alternatively, from a bacterial colony. The above bacterial species can account for as much as 80% of bacterial pathogens isolated in routine microbiology laboratories. The core of this invention consists primarily of the DNA sequences from all species-specific genomic DNA fragments selected by hybridization from genomic libraries or, alternatively, selected from data banks as well as any oligonucleotide sequences derived from these sequences which can be used as probes or amplification primers for PCR or any other nucleic acid amplification methods. This invention also includes DNA sequences from the selected clinically relevant antibiotic resistance genes. With these methods, bacteria can be detected (universal primers and/or probes) and identified (species-specific primers and/or probes) directly from the clinical specimens or from an isolated bacterial colony. Bacteria are further evaluated for their putative susceptibility to antibiotics by resistance gene detection (antibiotic resistance gene specific primers and/or probes). Diagnostic kits for the detection of the presence, for the bacterial identification of the above-mentioned bacterial species and for the detection of antibiotic resistance genes are also claimed. These kits for the rapid (one hour or less) and accurate diagnosis of bacterial infections and antibiotic resistance will gradually replace conventional methods currently used in clinical microbiology laboratories for routine diagnosis. They should provide tools to clinicians to help prescribe promptly optimal treatments when necessary. Consequently, these tests should contribute to saving human lives, rationalizing treatment, reducing the development of antibiotic resistance and avoid unnecessary hospitalizations.
Owner:GENEOHM SCI CANADA

Specific and universal probes and amplification primers to rapidly detect and identify common bacterial pathogens and antibiotic resistance genes from clinical specimens for routine diagnosis in microbiology laboratories

The present invention relates to DNA-based methods for universal bacterial detection, for specific detection of the common bacterial pathogens Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Staphylococcus saprophyticus, Streptococcus pyogenes, Haemophilus influenzae and Moraxella catarrhalis as well as for specific detection of commonly encountered and clinically relevant bacterial antibiotic resistance genes directly from clinical specimens or, alternatively, from a bacterial colony. The above bacterial species can account for as much as 80% of bacterial pathogens isolated in routine microbiology laboratories. The core of this invention consists primarily of the DNA sequences from all species-specific genomic DNA fragments selected by hybridization from genomic libraries or, alternatively, selected from data banks as well as any oligonucleotide sequences derived from these sequences which can be used as probes or amplification primers for PCR or any other nucleic acid amplification methods. This invention also includes DNA sequences from the selected clinically relevant antibiotic resistance genes. With these methods, bacteria can be detected (universal primers and / or probes) and identified (species-specific primers and / or probes) directly from the clinical specimens or from an isolated bacterial colony. Bacteria are further evaluated for their putative susceptibility to antibiotics by resistance gene detection (antibiotic resistance gene specific primers and / or probes). Diagnostic kits for the detection of the presence, for the bacterial identification of the above-mentioned bacterial species and for the detection of antibiotic resistance genes are also claimed. These kits for the rapid (one hour or less) and accurate diagnosis of bacterial infections and antibiotic resistance will gradually replace conventional methods currently used in clinical microbiology laboratories for routine diagnosis. They should provide tools to clinicians to help prescribe promptly optimal treatments when necessary. Consequently, these tests should contribute to saving human lives, rationalizing treatment, reducing the development of antibiotic resistance and avoid unnecessary hospitalizations.
Owner:GENEOHM SCI CANADA

Specific and universal probes and amplification primers to rapidly detect and identify common bacterial pathogens and antibiotic resistance genes from clinical specimens for routine diagnosis in microbiology laboratories

The present invention relates to DNA-based methods for universal bacterial detection, for specific detection of the common bacterial pathogens Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Staphylococcus saprophyticus, Streptococcus pyogenes, Haemophilus influenzae and Moraxella catarrhalis as well as for specific detection of commonly encountered and clinically relevant bacterial antibiotic resistance genes directly from clinical specimens or, alternatively, from a bacterial colony. The above bacterial species can account for as much as 80% of bacterial pathogens isolated in routine microbiology laboratories. The core of this invention consists primarily of the DNA sequences from all species-specific genomic DNA fragments selected by hybridization from genomic libraries or, alternatively, selected from data banks as well as any oligonucleotide sequences derived from these sequences which can be used as probes or amplification primers for PCR or any other nucleic acid amplification methods. This invention also includes DNA sequences from the selected clinically relevant antibiotic resistance genes. With these methods, bacteria can be detected (universal primers and/or probes) and identified (species-specific primers and/or probes) directly from the clinical specimens or from an isolated bacterial colony. Bacteria are further evaluated for their putative susceptibility to antibiotics by resistance gene detection (antibiotic resistance gene specific primers and/or probes). Diagnostic kits for the detection of the presence, for the bacterial identification of the above-mentioned bacterial species and for the detection of antibiotic resistance genes are also claimed. These kits for the rapid (one hour or less) and accurate diagnosis of bacterial infections and antibiotic resistance will gradually replace conventional methods currently used in clinical microbiology laboratories for routine diagnosis. They should provide tools to clinicians to help prescribe promptly optimal treatments when necessary. Consequently, these tests should contribute to saving human lives, rationalizing treatment, reducing the development of antibiotic resistance and avoid unnecessary hospitalizations.
Owner:GENEOHM SCI CANADA

Administration of negamycin or deoxynegamycin for the treatment of bacterial infections

The invention provides a method for treating bacterial infections. In one aspect, the invention comprises orally administering a pharmaceutical composition to an animal, wherein the composition comprises a pharmaceutically acceptable excipient and an antibacterial effective amount of negamycin, or a pharmaceutically acceptable salt, prodrug or isomer thereof. An aspect of the invention also relates to a method of treating a bacterial infection, wherein the method comprises intravenously administering a pharmaceutical composition to an animal, and wherein the composition comprises a pharmaceutically acceptable excipient and an antibacterial effective amount of deoxynegamycin, or a pharmaceutically acceptable salt, prodrug or isomer thereof. An aspect of the invention also relates to a method of treating a bacterial infection, wherein the method comprises administering to an animal an antibacterial effective amount of negamycin or deoxynegamycin, or a pharmaceutically acceptable salt, prodrug or isomer thereof, and wherein the infecting bacteria are selected from a group of bacteria consisting of the following: Acinetobacter baumanii, Citrobacter freundii, Enterobacter aerogenes, haemophilus influenzae, Moraxella catarrhalis, Staphylococcus aureus MRSA, Staphylococcus aureus GISA, Staphylococcus epidermis, Streptococcus pneumoniae PenR, Streptococcus pneumoniae PenS and Streptococcus pyogenes.
Owner:VERSICOR

Multiple quantitative PCR (polymerase chain reaction) kit for quick combined detection of four bacteria difficult to cultivate and identify

The invention provides a multiple quantitative PCR (polymerase chain reaction) kit for quick combined detection of four bacteria difficult to cultivate and identify. The multiple quantitative PCR kit comprises four PCR reaction systems, wherein the four PCR reaction systems comprise AllGlo fluorescence probes and forward and reverse primers aimed at the following four pathogens which cause child bacterial pneumonia and are clinically difficult to cultivate and identify: haemophilus influenza, streptococcus pneumonia, moraxella catarrhalis and legionella pneumophila. According to the multiple quantitative PCR kit, the design is reasonable, the infection of the four pathogens, clinically difficult to cultivate and identify, of child bacterial pneumonia can be easily, conveniently, quickly and parallelly detected in a reaction tube at the same time, the situation that four bacteria are detected at the same time through single-tube PCR is achieved, quantitative detection is achieved, the kit is easy and quick to operate, high in sensitivity, good in specificity and repeatability, accurate and reliable in result, early specific diagnosis, prevention and treatment can be provided for patients suffering from infantile pneumonia according to the bacterial infection titer, and the kit has great clinical practicability for interdicting an infection source, reducing infection or mixed infection of the four bacteria and monitoring the clinical curative effect.
Owner:HANGZHOU FIRST PEOPLES HOSPITAL

Moraxella catarrhalis quantum dot-immunochromatography detection card and preparation method and application thereof

The invention provides a moraxella catarrhalis (Mc) quantum dot-immunochromatography detection card and a preparation method and an application thereof. The detection card comprises a bottom plate, a sample pad, a water absorption pad, a conjugate pad and a detection layer, wherein the conjugate pad is coated by a quantum dot labelled anti-Mc nano-probe; the detection layer is formed by a solid-phase nitrocellulose membrane with a detection line and a quality control line; the detection line is coated by a mouse anti-Mc UspA1 protein polyclonal antibody; the quality control line is coated by anti-rabbit IgG (immunoglobulin); the detection layer is stuck to the bottom plate; the conjugate pad and the water absorption pad are respectively arranged above the two ends of the detection layer and are respectively stuck to the detection layer and the bottom plate after partially overlapping with the detection layer; the sample pad is arranged above the conjugate pad and is stuck to the conjugate pad and the bottom plate respectively after partially overlapping with the conjugate pad. The detection card has the advantages of simplicity and convenience in operation, high detection speed, capability of quantifying, high sensitivity and the like.
Owner:湖北诺美华抗体药物技术有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products