Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

67 results about "Random logic" patented technology

Random logic is a semiconductor circuit design technique that translates high-level logic descriptions directly into hardware features such as AND and OR gates. The name derives from the fact that few easily discernible patterns are evident in the arrangement of features on the chip and in the interconnects between them. In VLSI chips, random logic is often implemented with standard cells and gate arrays.

Method of physical planning voltage islands for ASICs and system-on-chip designs

Voltage islands enable a core-level power optimization of ASIC / SoC designs by utilizing a unique supply voltage for each cluster of the design. Creating voltage islands in a chip design for optimizing the overall power consumption consists of generating voltage island partitions, assigning voltage levels and floorplanning. The generation of voltage island partitions and the voltage level assignment are performed simultaneously in a floorplanning context due to the physical constraints involved. This leads to a floorplanning formulation that differs from the conventional floorplanning for ASIC designs. Such a formulation of a physically aware voltage island partitioning and method for performing simultaneous voltage island partitioning, level assignment and floorplanning are described, as are the definition and the solution of floorplanning for voltage island based designs executed under area, power, timing and physical constraints. The physical planning of voltage islands includes: a) characterizing cell clusters in terms of voltages and power consumption values; b) providing a set of cell clusters that belong to a single voltage island Random Logic Macro (RLM); and c) assigning voltages for the voltage island RLMs, all within the context of generating a physically realizable floorplan for the design.
Owner:GOOGLE LLC

Modular Galois-field subfield-power integrated inverter-multiplier circuit for Galois-field division over GF(256)

A modular Galois-field subfield-power integrated inverter-multiplier circuit that may be used to perform Galois-field division over GF(245). The integrated inverter-multiplier circuit combines subfield-power and parallel multiplication and inversion operations performed therein. The circuit is modular, has a relatively low gate count, and is easily pipelined because it does not use random logic. The circuit implements mathematical calculations known as “Galois-field arithmetic” that are required for a variety of digital signaling and processing applications such as Reed-Solomon and Bose-Chaudhuri-Hochquenghem (BCH) error-correction coding systems. Galois-field division is particularly difficult, typically requiring either a great deal of time or highly complex circuits, or both. The circuit uses a unique combination of subfield and power inversion techniques to carry out multiplicative inversion. Furthermore, the circuit uniquely implements Galois-field division by carrying out the multiplicative inversion and the multiplication simultaneously and in parallel. This substantially increases computation speed. The modularity and pipelineability of the present invention also make system design easier and increases the speed and reduces the gate count of an integrated circuit embodying the inverter-multiplier circuit.
Owner:LOCKHEED MARTIN CORP

Method of physical planning voltage islands for ASICs and system-on-chip designs

Voltage islands enable a core-level power optimization of ASIC / SoC designs by utilizing a unique supply voltage for each cluster of the design. Creating voltage islands in a chip design for optimizing the overall power consumption consists of generating voltage island partitions, assigning voltage levels and floorplanning. The generation of voltage island partitions and the voltage level assignment are performed simultaneously in a floorplanning context due to the physical constraints involved. This leads to a floorplanning formulation that differs from the conventional floorplanning for ASIC designs. Such a formulation of a physically aware voltage island partitioning and method for performing simultaneous voltage island partitioning, level assignment and floorplanning are described, as are the definition and the solution of floorplanning for voltage island based designs executed under area, power, timing and physical constraints. The physical planning of voltage islands includes: a) characterizing cell clusters in terms of voltages and power consumption values; b) providing a set of cell clusters that belong to a single voltage island Random Logic Macro (RLM); and c) assigning voltages for the voltage island RLMs, all within the context of generating a physically realizable floorplan for the design.
Owner:GOOGLE LLC

ESOP minimization method for logic function

The present invention discloses an ESOP minimization method for a logic function. By converting the optimal coverage searching problem of a 3n global space in the ESOP minimization process of an n variable logic function into the simplest connection problem in a plurality of cube blocks, a search space is reduced, thereby breaking away from a constraint of a variable scale; moreover, a cube set is directly operated without being converted into a minterm set, so that limitation to a product term number is avoided; and in order to achieve accurate minimization of rapid ESOP, a minimized conversion algorithm of a cube EXOR conversion diagram is adopted to improve operation efficiency so as to effectively reduce calculation complexity and a memory occupied quantity, and the characteristics that calculation time is insensitive to the number of input variables and is only related to the number of product terms included by the logic function and intersection can effectively achieve an effect that random n variables totally regulate the ESOP minimization of the logic function. The ESOP minimization method has the advantages of no limitation to the number of the product items and the number of the variables in the logic function and capacity of carrying out minimization processing on an ESOP of a random logic function.
Owner:ZHEJIANG WANLI UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products