Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

135 results about "Ringing artifacts" patented technology

In signal processing, particularly digital image processing, ringing artifacts are artifacts that appear as spurious signals near sharp transitions in a signal. Visually, they appear as bands or "ghosts" near edges; audibly, they appear as "echos" near transients, particularly sounds from percussion instruments; most noticeable are the pre-echos. The term "ringing" is because the output signal oscillates at a fading rate around a sharp transition in the input, similar to a bell after being struck. As with other artifacts, their minimization is a criterion in filter design.

Reducing blocking and ringing artifacts in low-bit-rate coding

A technique to reduce blocking and ringing artifacts in low bit-rate block-based video coding is applied to each reconstructed frame output from the decoder. For each pixel block of a reconstructed frame, its DC value and DC values of the surrounding eight neighbor blocks are exploited to predict AC coefficients which might be lost in the quantization stage in the encoding process. The predicted AC coefficients are used to classify each reconstructed block as either a low-activity or a high-activity block. Low-pass filtering is then adaptively applied according to the classification of the block. Strong low-pass filtering is applied in low-activity blocks where the blocking artifacts are most noticeable, whereas weak low-pass filtering is applied in high-activity blocks where ringing noise as well as blocking artifacts may exist. The adaptive filtering reduces ringing noise as well as blocking artifacts without introducing undesired blur. In low activity blocks, the blocking artifacts are reduced by one dimensional horizontal and vertical low-pass filters which are selectively applied in either the horizontal and / or vertical direction depending on the locations and absolute values of the predicted AC coefficients. In high activity blocks, de-blocking and de-ringing is conducted by a single filter, applied horizontally and / or vertically, which makes the architecture simple.
Owner:SEIKO EPSON CORP

System and method for progressively transforming and coding digital data

A system and method facilitating progressively transforming and coding digital pictures is provided. The present invention via employment of a multi-resolution lapped transform provides for progressive rendering as well as mitigation of blocking artifacts and ringing artifacts as compared to many conventional compression systems. The invention includes a color space mapper, a multi-resolution lapped transform, a quantizer, a scanner and an entropy encoder. The multi-resolution lapped transform outputs transform coefficients, for example, first transform coefficients and second transform coefficients. A multi-resolution representation can be obtained utilizing second transform coefficients of the multi-resolution lapped transform. The color space mapper maps an input image to a color space representation of the input image. The color space representation of the input image is then provided to the multi-resolution lapped transform. The quantizer receives the first transform coefficients and / or the second transform coefficients and provides an output of quantized coefficients for use by the scanner and / or the entropy encoder. The scanner scans the quantized coefficients in order to produce a one-dimensional vector for use by the entropy encoder. The entropy encoder encodes the quantized coefficients received from the quantizer and / or the scanner resulting in data compression.
Owner:ZHIGU HLDG

Calibration method for ring artifact correction in non-ideal isocentric 3D rotational x-ray scanner systems using a calibration phantom based rotation center finding algorithm

The present invention refers to 3D rotational X-ray imaging systems for use in computed tomography (CT) and, more particularly, to a fast, accurate and mathematically robust calibration method for determining the effective center of rotation (I) in not perfectly isocentric 3D rotational C-arm systems and eliminating substantially circular ring artifacts (RA) which arise when using such a CT scanner system for acquiring a set of 2D projection images of an object of interest to be three-dimensionally reconstructed. For this purpose, a C-arm based rotational CT scanner comprising at least one radiation detector (D) having an X-radiation sensitive surface exposed to an X-ray beam emitted by at least one X-ray tube (S), each rotating along a non-ideal circular trajectory (TF, TCD) about an object of interest to be three-dimensionally reconstructed from a set of 2D projection images is used for providing geometrical calibration data by scanning a calibration phantom from a plurality of distinct projection directions and calculating, for each projection direction, the 3D positions of the X-ray tube's focal spot and the X-ray detector's center. For approximating the exact 3D position and angular direction of the axis of rotation about which the at least one X-ray tube and the at least one radiation detector rotate, a circular regression technique using a number of mathematically robust least squares fits is applied.
Owner:KONINKLIJKE PHILIPS ELECTRONICS NV

System and method for progressively transforming and coding digital data

A system and method facilitating progressively transforming and coding digital pictures is provided. The present invention via employment of a multi-resolution lapped transform provides for progressive rendering as well as mitigation of blocking artifacts and ringing artifacts as compared to many conventional compression systems. The invention includes a color space mapper, a multi-resolution lapped transform, a quantizer, a scanner and an entropy encoder. The multi-resolution lapped transform outputs transform coefficients, for example, first transform coefficients and second transform coefficients. A multi-resolution representation can be obtained utilizing second transform coefficients of the multi-resolution lapped transform. The color space mapper maps an input image to a color space representation of the input image. The color space representation of the input image is then provided to the multi-resolution lapped transform. The quantizer receives the first transform coefficients and / or the second transform coefficients and provides an output of quantized coefficients for use by the scanner and / or the entropy encoder. The scanner scans the quantized coefficients in order to produce a one-dimensional vector for use by the entropy encoder. The entropy encoder encodes the quantized coefficients received from the quantizer and / or the scanner resulting in data compression.
Owner:ZHIGU HLDG

Method for three-dimensional representation of stratified structure micrometer CT imaging of turbine blade heat barrier coating

The invention discloses a method for three-dimensional representation of stratified structure micrometer CT imaging of a turbine blade heat barrier coating. The method comprises the following steps: preparing a double-layer-structure heat barrier coating micrometer CT scanning sample; firstly, carrying out micrometer CT scanning on the heat barrier coating sample, carrying out ring artifact and beam hardening correction on projection data, then carrying out three-dimensional reconstruction to obtain three-dimensional stratified structure information, establishing a three-dimensional structure analysis model, and carrying out characteristic segmentation and extraction on three components, namely a ceramic heat insulating layer, a bonding layer and matrix alloy; then, analyzing the thickness of the coating, extracting the distribution of holes in the coating, calculating the porosity, extracting the interface topography of the coating, and analyzing structure characteristics such as internal defects; and finally, estimating the preparation process quality of the heat barrier coating by integrating the composition, thickness, porosity distribution, interface topography and the like. The method for three-dimensional representation of the stratified structure of the heat barrier coating provided by the invention is suitable for estimation and optimization of the spraying process quality of the heat barrier coating, so that the quality of the heat barrier coating can be well controlled.
Owner:NANCHANG HANGKONG UNIVERSITY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products