Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

4514 results about "Non linearity" patented technology

Non-linearity is the maximum deviation from a straight line that connects the zero point of a measuring range with the end point/ full scale.

Full-field three-dimensional measurement method

A method and system for full-field fringe-projection for 3-D surface-geometry measurement, referred to as “triangular-pattern phase-shifting” is disclosed. A triangular grey-scale-level-coded fringe pattern is computer generated, projected along a first direction onto an object or scene surface and distorted according to the surface geometry. The 3-D coordinates of points on the surface are calculated by triangulation from distorted triangular fringe-pattern images acquired by a CCD camera along a second direction and a triangular-shape intensity-ratio distribution is obtained from calculation of the captured distorted triangular fringe-pattern images. Removal of the triangular shape of the intensity ratio over each pattern pitch generates a wrapped intensity-ratio distribution obtained by removing the discontinuity of the wrapped image with a modified unwrapping method. Intensity ratio-to-height conversion is used to reconstruct the 3-D surface coordinates of the object. Intensity-ratio error compensation involves estimating intensity-ratio error in a simulation of the measurement process with both real and ideal captured triangular-pattern images obtained from real and ideal gamma non-linearity functions. A look-up table relating the measure intensity-ratio to the corresponding intensity-ratio error is constructed and used for intensity-ratio error compensation. The inventive system is based on two-step phase-shifting but can be extended for multiple-step phase-shifting.
Owner:UNIVERSITY OF WATERLOO

Method and apparatus for obtaining high dynamic range images

Disclosed are method and apparatus for obtaining relatively high dynamic range images using a relatively low dynamic range image sensor without significant loss of resolution. The image sensor has an array of light-sensing elements with different sensitivity levels in accordance with a predetermined spatially varying sensitivity pattern for the array of light-sensing elements. An image of a scene is captured with the image sensor and stored as brightness values at respective pixel positions in a linear or two-dimensional uniform grid. The brightness values of the captured image at the pixel positions are then used to estimate the brightness values at off-grid positions of a uniform off-grid array located at respective interstices of the pixel position grid. The estimated off-grid brightness values are either used directly as the pixel brightness values of a relatively high dynamic output image or interpolated to derive resampled on-grid brightness values at the pixel positions of the pixel position grid to provide a relatively high dynamic range output image. Alternatively, the brightness values of the captured image are interpolated by an on-grid interpolation filter to derive pixel brightness values of a relatively high dynamic range output image, each pixel brightness value of the output image being derived from a corresponding plurality of the captured image brightness values. In each instance, either the captured image brightness values or the pixel brightness values of the output image may be compensated for non-linearities of the radiometric response function of the light-sensing elements of the image sensor.
Owner:THE TRUSTEES OF COLUMBIA UNIV IN THE CITY OF NEW YORK +1

Communications signal amplifiers having independent power control and amplitude modulation

The present invention, generally speaking, provides methods and apparatus for producing an amplitude modulated communications signal, in which a constant-envelope carrier signal is modified in response to a power control signal to produce a modified constant-envelope carrier signal. The modified constant-envelope carrier signal is amplified in response to an amplitude modulation signal to produce a communications signal having amplitude modulation and having an average output power proportional to a signal level of the modified constant-envelope carrier signal. This manner of operation allows wide dynamic range of average output power to be achieved. Because amplitude modulation is applied after amplitude varying circuitry used to produce the modified constant-envelope carrier signal, the amplitude modulation is unaffected by possible non-linearities of such circuitry. In accordance with another aspect of the invention, operation in the foregoing manner at comparatively low average output power levels is combined with switch mode operation at comparatively high average output power levels, enabling high overall efficiency to be achieved. Hence, the disclosed modulator and amplifier combination, in addition to supporting very low power signals, also supports high power signals.
Owner:INTEL CORP

Sampled amplitude read channel employing an adaptive non-linear correction circuit for correcting non-linear distortions in a read signal

A sampled amplitude read channel is disclosed for magnetic disk storage systems comprising an adaptive non-linear correction circuit for correcting non-linear distortions in the read signal, such as asymmetry caused by the non-linear response of a magneto-resistive (MR) read head. The analog read signal is sampled and the discrete time sample values equalized into a desired partial response prior to sequence detection. The non-linear correction circuit is inserted into the read path prior to the sequence detector and adaptively tuned by a least-mean-square (LMS) adaptation circuit. In one embodiment, the non-linear correction circuit is a discrete-time Volterra filter comprising a linear response for implementing an equalizing filter, and a non-linear response for attenuating non-linear distortions in the read signal. The filter coefficients of both the linear and non-linear sections of the Volterra filter are adaptively adjusted by the LMS adaptation circuit. In an alternative embodiment, the non-linear correction circuit operates in the analog domain, prior to the sampling device, where the cost and complexity can be minimized. The analog correction circuit implements an inverse response to that of the non-linearity in the read signal, and the response is adaptively tuned using an LMS update value computed in discrete-time for a Volterra filter, without actually implementing a Volterra filter. Further, the LMS update value for the analog correction circuit can be implemented using a simple squaring circuit.
Owner:CIRRUS LOGIC INC

Gesture synthesizer for electronic sound device

A MIDI-compatible gesture synthesizer is provided for use with a conventional music synthesizer to create musically realistic<DEL-S DATE="20020416" ID="DEL-S-00001" / >ally<DEL-E ID="DEL-S-00001" / > sounding gestures. The gesture synthesizer is responsive to one or more user controllable input signals, and includes several transfer function models that may be user-selected. One transfer function models properties of muscles using Hill's force-velocity equation to describe the non-linearity of muscle activation. A second transfer function models the cyclic oscillation produced by opposing effects of two force sources representing the cyclic oppositional action of muscle systems. A third transfer function emulates the response of muscles to internal electrical impulses. A fourth transfer function provides a model representing and altering virtual trajectory of gestures. A fifth transfer function models visco-elastic properties of muscle response to simulated loads. The gesture synthesizer outputs <DEL-S DATE="20020416" ID="DEL-S-00002" / >MIDI-compatible<DEL-E ID="DEL-S-00002" / > continuous pitch data, tone volume and tone timbre information. The continuous pitch data is combined with discrete pitch data provided by the discrete pitch generator within the conventional synthesizer, and the combined signal is input to a tone generator, along with the tone volume and tone timbre information. The tone generator outputs tones that are user-controllable in real time during performance of a musical gesture.
Owner:LONGO NICHOLAS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products