Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1131 results about "Stadimeter" patented technology

A stadimeter is an optical device for estimating the range to an object of known height by measuring the angle between the top and bottom of the object as observed at the device. It is similar to a sextant, in that the device is using mirrors to measure an angle between two objects but differs in that one dials in the height of the object. It is one of several types of optical rangefinders, and does not require a large instrument, and so was ideal for hand-held implementations or installation in a submarine's periscope. A stadimeter is a type of analog computer.

High voltage overhead transmission line line-inspection unmanned aerial vehicle photoelectric detection device

The invention relates to a high voltage overhead transmission line line-inspection unmanned aerial vehicle photoelectric detection device belonging to the technical field of power line inspection. The invention aims at solving the problem of single technology of the existing overhead transmission line line-inspection. The high voltage overhead transmission line line-inspection unmanned aerial vehicle photoelectric detection device mainly comprises an unmanned aerial vehicle, a GPS (global position system) inertial integrated attitude azimuth detection device, a damping device, a rotation detection nacelle, a ground data receiving processor and a controller. The high voltage overhead transmission line line-inspection unmanned aerial vehicle photoelectric detection device is characterized in that the GPS inertial integrated attitude azimuth detection device is arranged at the inner part of the unmanned aerial vehicle; the rotation detection nacelle is hung below the unmanned aerial vehicle by the damping device; a photoelectric stabilized platform is installed in the rotation detection nacelle; flexible combination of any two or more of a visible light camera, an ultraviolet ray imager and a full-digital dynamic thermal infrared imager and a laser ranging device are borne on the photoelectric stabilized platform; and the rotation detection nacelle is provided with a visible window. With the adoption of the high voltage overhead transmission line line-inspection unmanned aerial vehicle photoelectric detection device, a high voltage transmission line can be monitored, and a comprehensive and precise high voltage overhead transmission line line-inspection task is realized by combining interchange among a plurality of sensors.
Owner:CHANGCHUN UNIV OF SCI & TECH +1

Device for measuring six-dimensional position poses of object

The invention discloses a device for measuring six-dimensional position poses of an object, which consists of a laser tracking instrument, a receiver, a computing unit and at least one small-sized laser light emitter, wherein the computing unit and the laser tracking instrument are fixedly arranged on the ground surface; the receiver is arranged on a moving object to be measured; the laser tracking instrument and the receiver communicate with the computing unit; the small-sized laser light emitter is arranged on the laser tracking instrument; a horizontal intersection angle and a pitching intersection angle of the laser tracking instrument are controllable, and the laser tracking instrument is provided with a laser distance measuring instrument; and the laser distance measuring instrument and the small-sized laser light emitter project laser light to a projection panel of the receiver respectively. The laser tracking instrument acquires a three-dimensional position of the receiver, and the computing unit solves three-dimensional postures of the receiver corresponding to a fixed coordinate system on the ground surface according to an azimuth angle of the laser tracking instrument and image data of laser faculae on the projection panel. The device can continuously measure moving objects or static objects in a large space, has the advantages of high precision, quick measuring speed, low cost and convenient arrangement, and can replace an expensive laser tracking instrument for measuring the six-dimensional poses.
Owner:SHENYANG INST OF AUTOMATION - CHINESE ACAD OF SCI

Camera based six degree-of-freedom target measuring and target tracking device with rotatable mirror

An embodiment may comprise a camera based target coordinate measuring system or apparatus for use in measuring the position of objects in manner that preserves a high level of accuracy. This high level of measurement accuracy is usually only associated with more expensive laser based devices. Many different arrangements are possible. Other embodiments may comprise related methods of using a camera based target coordinate measuring method for use in measuring the position of objects. Many variations on the methods are possible. For example, a camera based coordinate measuring system for use in measuring the position of a target relative to at least one frame of reference without requiring use of a laser range finder for measuring distance may comprise at least three or more light sources located on a target wherein the light sources are located on the target at known three-dimensional coordinates relative to each other; at least one rotatable mirror rotatable on about a first axis and a second axis; a camera located to receive light emitted by the light sources that is reflected off the minor; two angular measuring devices to measure the angles of rotation of the mirror about the first and second axes; and a processor for determining up to three positional degrees of freedom and up to three rotational degrees of freedom of the target.
Owner:FARO TECH INC

Robot hand-eye calibration method based on laser range finding

The invention discloses a robot hand-eye calibration method based on laser range finding. According to the method, by calculating the coordinates of laser spots under a laser range finder coordinate system, the coordinates of the laser spots under a robot coordinate system are calculated by means of the mapping relation between the laser range finder coordinate system and the robot coordinate system; by capturing pictures of the laser spots on a calibration board through a camera, the coordinates of the laser spots under a pixel coordinate system are calculated, and therefore the mapping relation between the pixel coordinate system and the robot coordinate system is calculated; the mapping relation between a camera coordinate system and the pixel coordinate system is obtained by means of parameters of the camera; and then the mapping relation between the camera coordinate system and the robot coordinate system is calculated according to the spatial switching relation. The method is carried out by emitting the laser spots to the surface of an object through a laser range finder, coordinate information of measurement points is obtained without the need of making contact with the object, in this way, operating errors are reduced, operation is easier, precision is high, manual participation is not needed in a calibration process, and automation and intellectualization are achieved.
Owner:LOTES SHENZHEN

Display, Device, Method, and Computer Program for Indicating a Clear Shot

An improved display provides information regarding a projectile trajectory so that a user is informed whether or not there is a clear shot. Such information facilitates accurate, effective, and safe firearm and bow use by providing indications regarding obstacles that are between the shooter and target and which may or may not be in the projectile trajectory. The improved display provides one or more path indicators shown over the cross hairs. In some embodiments the highest point in the projectile trajectory (being a true aim point) is indicated in relation to the visualized target and possible obstacles. An improved rangefinder device generally includes a range sensor operable to determine a first range to a target, a tilt sensor operable to determine an angle to the target relative to the device, and a computing element, coupled with the range sensor and the tilt sensor, operable to determine an accurate projectile trajectory based on the first range and the determined angle. In some embodiments any obstacle in the projectile trajectory is automatically ranged and an indication is provided that the obstacle will interfere with the clear shot. A game display embodiment provides education regarding the technology. Enhanced rangefinders have digital cameras and high-resolution displays. Some embodiments adapt a mobile smart device such as an iPhone with a range sensor to be a high resolution rangefinder with a touch screen, GPS, and video analysis capabilities.
Owner:EVRIO

Measurement mechanism of lens focal length, measurement method and thereof and optical quality evaluation method

InactiveCN101140196APrecision Measuring Focal LengthPrecise measurement of depth of focusTesting optical propertiesMeasurement deviceLong-focus lens
The invention relates to a device and a method for measuring lens focal length as well as a method for evaluating optical quality, wherein the device for measuring the lens focal length is composed of a plane mirror, a lens to be measured, a point light source, a vertical incision, a one-dimensional precise flat movable guide rail, a laser distance measuring instrument, a CCD detector and a display, and the method for measuring the lens focal length is as follows: (1) adjusting the autocollimation of the point light source and the lens to be measured; (2) adjusting the plane mirror to make the transflective convergent beam enter the CCD detector; (3) measuring the focal depth of the lens to be measured; (4) measuring the distance L from the point light source to the geometric main plane of the lens to be measured; (5) calculating the focal length f = L + d of the lens to be measured, and the d is the distance between the geometric main plane of the lens and the optical main plane. The optical processing quality of the lens to be measured is qualitatively evaluated through the observation of shape of the far-field focal spot. The device and the method are applied to the measurement and evaluation of the small-bore short-focus and large-bore long-focus lens, and have the advantages of the intuitionism, the high measuring precision and the simple mechanism.
Owner:SHANGHAI INST OF OPTICS & FINE MECHANICS CHINESE ACAD OF SCI

Non-cooperative target abutting measurement method based on additional sighting distance

ActiveCN102914262AMeasurement Error Value EqualizationLower conditions for rendezvous and dockingPhotogrammetry/videogrammetryUsing optical meansLaser lightZ-Coordinate
The invention discloses a non-cooperative target abutting measurement method based on additional sighting distance. The non-cooperative target abutting measurement method is combined by two measurement modes of different principles, i.e. a binocular vision measurement mode and a laser ranging mode, wherein the binocular vision measurement mode is a main measurement means for a six-degree-of-freedom parameter of a target relative position and a relative gesture; the laser ranging mode is mainly characterized in that a laser distance meter provides a laser light beam hot spot emitted on a target surface; and then, a Z coordinate of the hot spot to a laser distance meter coordinate system is obtained. Because measurement precision of the laser distance meter on a relatively long distance is far higher than that of the binocular vision measurement, the Z coordinate measured by a tiny fault of the laser distance meter can be used for correcting the Z coordinate obtained by the binocular vision measurement. X and Y coordinate correction can be carried out by relevance among three position coordinates in the binocular vision measurement, so that the three position coordinates of any characteristic point obtained by vision measurement can be corrected so as to improve binocular vision measurement precision, and especially measurement precision of a long-distance target characteristic point is improved.
Owner:BEIJING INST OF CONTROL ENG

Moving robot obstacle avoiding method based on laser range finder

The invention relates to a moving robot obstacle avoiding method based on a laser range finder, which comprises the following steps: building the coordinate system of the robot; with the current location of the robot as a center of a circle, simulating laser transmission at the origin of coordinates to transmit N laser beams of which the directions are determined as candidate directions of the motion of the robot; dividing laser information into groups, selecting an obstacle point in each group, and mapping the obstacle point into the coordinate system of the robot; expanding the robot into acircle with a radius of R, drawing two tangent lines of the circle through one obstacle point, working out the range of the candidate directions in which the robot can go across the obstacle point according to the included angles of the tangent lines and an X-axis, and getting the direction in which the robot can go across the obstacle point; defining a cost function to evaluate all feasible directions, and selecting the optimal direction of the next circle of motion of the robot; and working out the linear speed and angular speed of the robot by using a speed control policy. According to themethod, the robot can avoid an obstacle in an unknown environment, and has high performance; and without deeper theoretical foundation, the method is simple, smart, easy to understand and practical, requires small calculation, and is particularly suitable to use.
Owner:SHENYANG SIASUN ROBOT & AUTOMATION
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products