Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2355 results about "X-ray tube" patented technology

An X-ray tube is a vacuum tube that converts electrical input power into X-rays. The availability of this controllable source of X-rays created the field of radiography, the imaging of partly opaque objects with penetrating radiation. In contrast to other sources of ionizing radiation, X-rays are only produced as long as the X-ray tube is energized. X-ray tubes are also used in CT scanners, airport luggage scanners, X-ray crystallography, material and structure analysis, and for industrial inspection.

X-ray inspection system for detecting explosives and other contraband

InactiveUS7092485B2Rapidly and accurately discriminates among different substancesQuick checkUsing wave/particle radiation meansMaterial analysis by transmitting radiationX-rayExplosive material
A baggage scanning system and method employ combined angular and energy dispersive x-ray scanning to detect the presence of a contraband substance within an interrogation volume of a baggage item. The interrogation volume is illuminated with penetrating, polychromatic x-rays in a primary fan beam from a source such as a tungsten-anode x-ray tube. An energy-dependent absorption correction is determined from measurement of the attenuation of the fan beam at a plurality of different energies. Radiation coherently scattered by substances in the interrogation volume is detected by an energy-resolved x-ray detector operated at a plurality of scattering angles to form a plurality of scattering spectra. Each scattering spectrum is corrected for energy-dependent absorption and the corrected spectra are combined to produce a scattering pattern. The experimental scattering pattern is compared with reference patterns that uniquely characterize known contraband substances. The system and method can locate and identify a wide variety of contraband substances in an accurate, reliable manner. The system provides for automated screening, with the result that vagaries of human performance are virtually eliminated. False alarms and the need for hand inspection are reduced and detection efficacy is increased.
Owner:CONTROL SCREENING

Method of and system for intravenous volume tomographic digital angiography imaging

A method of and system for performing intravenous tomographic digital angiography imaging which combines the principles of intravenous digital angiography with those of cone-beam volume tomography for generating a direct, unambiguous and accurate 3-D reconstruction of stenosis and other irregularities and malformations from 2-D cone-beam tomography projections is disclosed in which several different data acquisition geometries, such as a circle-plus-arc data acquisition geometry, may be utilized to provide a complete set of data so that an exact 3-D reconstruction is obtained. Only a single IV contrast injection with a short breathhold by the patient is needed for use with a volume CT scanner which uses a cone-beam x-ray source and a 2-D detector for fast volume scanning in order to provide true 3-D descriptions of vascular anatomy with more than 0.5 lp/mm isotropic resolution in the x, y and z directions is utilized in which one set of cone-beam projections is acquired while rotating the x-ray tube and detector on the CT gantry and then another set of projections is acquired while tilting the gantry by a small angle. The projection data is preweighted and the partial derivatives of the preweighted projection data are calculated. Those calculated partial derivatives are rebinned to the first derivative of the Radon transform, for both the circular orbit data and the arc orbit data. The second partial derivative of the Radon transform is then calculated and then the reconstructed 3-D images are obtained by backprojecting using the inverse Radon transform.
Owner:UNIVERSITY OF ROCHESTER

X-ray inspection system for detecting explosives and other contraband

A baggage scanning system and method employ combined angular and energy dispersive x-ray scanning to detect the presence of a contraband substance within an interrogation volume of a baggage item. The interrogation volume is illuminated with penetrating, polychromatic x-rays in a primary fan beam from a source such as a tungsten-anode x-ray tube. An energy-dependent absorption correction is determined from measurement of the attenuation of the fan beam at a plurality of different energies. Radiation coherently scattered by substances in the interrogation volume is detected by an energy-resolved x-ray detector operated at a plurality of scattering angles to form a plurality of scattering spectra. Each scattering spectrum is corrected for energy-dependent absorption and the corrected spectra are combined to produce a scattering pattern. The experimental scattering pattern is compared with reference patterns that uniquely characterize known contraband substances. The system and method can locate and identify a wide variety of contraband substances in an accurate, reliable manner. The system provides for automated screening, with the result that vagaries of human performance are virtually eliminated. False alarms and the need for hand inspection are reduced and detection efficacy is increased.
Owner:CONTROL SCREENING
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products