Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

483results about "Working-up pitch/asphalt/bitumen" patented technology

Wide-cut synthetic isoparaffinic lubricating oils

A wide-cut lubricant base stock is made by hydroisomerizing and then catalytically dewaxing a waxy Fischer-Tropsch synthesized hydrocarbon fraction feed and comprises the entire dewaxate having an initial boiling point in the 650-75O° F.+ range. Formulated lubricating oils made by admixing the base stock with a commercial automotive additive package meet all specifications, including low temperature properties, for multigrade internal combustion engine crankcase oils. The waxy feed has an initial boiling point in the 650-750° F. range and continuously boils to an end point of at least 1050° F.+. Lower boiling hydrocarbons produced by the process are separated from the base stock by simple flash distillation. The base stock comprises the entire dewaxate having an initial boiling point in the 650-750° F. range.
Owner:EXXON RES & ENG CO

Effective integration of solvent deasphalting and ebullated-bed processing

This invention relates to a novel method for economically processing vacuum residue from heavy crude oils by selectively processing the difficult and easy components in reactors whose design and operating conditions are optimized for the specific feed. The process utilizes an integrated solvent deasphalting (SDA) / ebullated-bed design wherein the heavy vacuum residue feedstock is initially sent to an SDA unit operated with C4 / C5 solvent to achieve a high deasphalted oil (DAO) yield. The resulting SDA products, namely asphaltenes and DAO are separately treated in ebullated-bed reactor(s) systems whose design and operating conditions are optimized for a particular feedstock. The resulting net conversion, associated distillate yield and product qualities are greatly improved relative to treatment of the entire residue feedstock in a common ebullated-bed reactor system.
Owner:INST FR DU PETROLE

Integrated SDA and ebullated-bed process

This invention relates to a novel integrated method for economically processing vacuum residue from heavy crude oils. This is accomplished by utilizing a solvent deasphalter (SDA) in the first step of the process with a C3 / C4 / C5 solvent such that the DAO product can thereafter be processed in a classic fixed-bed hydrotreater or hydrocracker. The SDA feed also includes recycled stripper bottoms containing unconverted residue / asphaltenes from a downstream steam stripper unit. The asphaltenes from the SDA are sent to an ebullated-bed reactor for conversion of the residue and asphaltenes. Residue conversion in the range of 60-80% is achieved and asphaltene conversion is in the range of 50-70%. The overall residue conversion, with the DAO product considered non-residue, is in the range of 80 W %-90 W % and significantly higher than could be achieved without utilizing the present invention.
Owner:INST FR DU PETROLE

Modified thermal processing of heavy hydrocarbon feedstocks

The present invention is directed to the upgrading of heavy petroleum oils of high viscosity and low API gravity that are typically not suitable for pipelining without the use of diluents. It utilizes a short residence-time pyrolytic reactor operating under conditions that result in a rapid pyrolytic distillation with coke formation. Both physical and chemical changes taking place lead to an overall molecular weight reduction in the liquid product and rejection of certain components with the byproduct coke. The liquid product is upgraded primarily because of its substantially reduced viscosity, increased API gravity, and the content of middle and light distillate fractions. While maximizing the overall liquid yield, the improvements in viscosity and API gravity can render the liquid product suitable for pipelining without the use of diluents. This invention particularly relates to reducing sulfur emissions during the combustion of byproduct coke (or coke and gas), to reducing the total acid number (TAN) of the liquid product, and to reducing the hydrogen sulfide content of one, or more than one component of the product stream. The method comprises introducing a particulate heat carrier into an up-flow reactor, introducing the feedstock at a location above the entry of the particulate heat carrier, allowing the heavy hydrocarbon feedstock to interact with the heat carrier for a short time, separating the vapors of the product stream from the particulate heat carrier and liquid and byproduct solid matter, regenerating the particulate heat carrier in the presence of the calcium compound, and collecting a gaseous and liquid product from the product stream.
Owner:IVANHOE HTL GASOLINEEUM

Hydrogen donor solvent production and use in resid hydrocracking processes

A process derived hydrogen donor solvent is used to increase the maximum resid conversion and conversion rate in an ebullated bed resid hydrocracker. The hydrogen donor solvent precursor is produced by hydroreforming reactions within the resid hydrocracker, recovered as the resin fraction from a solvent deasphalting unit, regenerated in a separate hydrotreater reactor, and recycled to the ebullated bed resid hydrocracker. The major advantage of this invention relative to earlier processes is that hydrogen is more efficiently transferred to the resin residual oil in the separate hydrotreater and the hydrogen donor solvent effectively retards the formation of coke precursors at higher ebullated bed resid hydrocracker operating temperatures and resid cracking rates.
Owner:BOC GRP INC

Integrated solvent deasphalting, hydrotreating and steam pyrolysis process for direct processing of a crude oil

A process is provided that is directed to a steam pyrolysis zone integrated with a solvent deasphalting zone and a hydrotreating zone to permit direct processing of crude oil feedstocks to produce petrochemicals including olefins and aromatics. The integrated solvent deasphalting, hydrotreating and steam pyrolysis process for the direct processing of a crude oil to produce olefinic and aromatic petrochemicals comprises: charging the crude oil to a solvent deasphalting zone with an effective amount of solvent for producing a deasphalted and demetalized oil stream and a bottom asphalt phase; charging the deasphalted and demetalized oil stream and hydrogen to a hydroprocessing zone operating under conditions effective to produce a hydroprocessed effluent reduced having a reduced content of contaminants, an increased paraffinicity, reduced Bureau of Mines Correlation Index, and an increased American Petroleum Institute gravity; thermally cracking the hydroprocessed effluent in the presence of steam to produce a mixed product stream; separating the mixed product stream; purifying hydrogen recovered from the mixed product stream and recycling it to the hydroprocessing zone; recovering olefins and aromatics from the separated mixed product stream; and recovering pyrolysis fuel oil from the separated mixed product stream.
Owner:SAUDI ARABIAN OIL CO

Integrated solvent deasphalting and steam pyrolysis process for direct processing of a crude oil

A process is provided that is directed to a steam pyrolysis zone integrated with a solvent deasphalting zone to permit direct processing of crude oil feedstocks to produce petrochemicals including olefins and aromatics. The integrated solvent deasphalting and steam pyrolysis process for the direct processing of a crude oil to produce olefinic and aromatic petrochemicals comprises charging the crude oil to a solvent deasphalting zone with an effective amount of solvent to produce a deasphalted and demetalized oil stream and a bottom asphalt phase; thermally cracking the deasphalted and demetalized oil stream in the presence of steam to produce a mixed product stream; separating the mixed product stream; recovering olefins and aromatics from the separated mixed product stream; and recovering pyrolysis fuel oil from the separated mixed product stream.
Owner:SAUDI ARABIAN OIL CO

Slurry hydrocracking apparatus or process

One exemplary embodiment can include a slurry hydrocracking process. The process can include combining one or more hydrocarbons and a slurry hydrocracking catalyst as a feed to a slurry hydrocracking reaction zone, fractionating an effluent from the slurry hydrocracking reaction zone, separating the pitch from at least a portion of the slurry hydrocracking catalyst, and recycling the suspension to the slurry hydrocracking reaction zone. The slurry hydrocracking catalyst may include a support. Fractionating the effluent may provide a light vacuum gas oil, a heavy vacuum gas oil, and a mixture comprising a pitch and the slurry hydrocracking catalyst. Generally, the separated slurry hydrocracking catalyst is comprised in a suspension.
Owner:UOP LLC

Modified thermal processing of heavy hydrocarbon feedstocks

The present invention is directed to the upgrading of heavy petroleum oils of high viscosity and low API gravity that are typically not suitable for pipelining without the use of diluents. It utilizes a short residence-time pyrolytic reactor operating under conditions that result in a rapid pyrolytic distillation with coke formation. Both physical and chemical changes taking place lead to an overall molecular weight reduction in the liquid product and rejection of certain components with the byproduct coke. The liquid product is upgraded primarily because of its substantially reduced viscosity, increased API gravity, and the content of middle and light distillate fractions. While maximizing the overall liquid yield, the improvements in viscosity and API gravity can render the liquid product suitable for pipelining without the use of diluents. This invention particularly relates to reducing sulfur emissions during the combustion of byproduct coke (or coke and gas) and to reducing the total acid number (TAN) of the liquid product. The method comprises introducing a particulate heat carrier into an up-flow reactor, introducing the feedstock at a location above the entry of the particulate heat carrier, allowing the heavy hydrocarbon feedstock to interact with the heat carrier for a short time, separating the vapors of the product stream from the particulate heat carrier and liquid and byproduct solid matter, regenerating the particulate heat carrier in the presence of the calcium compound, and collecting a gaseous and liquid product from the product stream.
Owner:IVANHOE HTL GASOLINEEUM

Waste rubber powder modified asphalt and its prepn process

The present invention provides one kind of waste rubber powder modified asphalt and its preparation process. In the temperature of 150-200 deg.c, waste tyre rubber powder of different grain size within 60 mesh, thermoplastic rubber and stabilizer in certain proportion are added into asphalt; and the mixture is processed in high shearing apparatus or colloid mill to prepare the asphalt product with high storage stability and excellent high and low temperature performance. The simple production process is suitable for industrial production.
Owner:CHINA PETROLEUM & CHEM CORP +1

Integrated SDA and ebullated-bed process

This invention relates to a novel integrated method for economically processing vacuum residue from heavy crude oils. This is accomplished by utilizing a solvent deasphalter (SDA) in the first step of the process with a C3 / C4 / C5 solvent such that the DAO product can thereafter be processed in a classic fixed-bed hydrotreater or hydrocracker. The SDA feed also includes recycled stripper bottoms containing unconverted residue / asphaltenes from a downstream steam stripper unit.The asphaltenes from the SDA are sent to an ebullated-bed reactor for conversion of the residue and asphaltenes. Residue conversion in the range of 60-80% is achieved and asphaltene conversion is in the range of 50-70%. The overall residue conversion, with the DAO product considered non-residue, is in the range of 80 W %-90 W % and significantly higher than could be achieved without utilizing the present invention.
Owner:INST FR DU PETROLE

Integrated process for deasphalting and desulfurizing whole crude oil

The invention relates to processes for removing impurities, such as asphalt, from whole crude oil. The invention is accomplished by first deasphalting a feedstock, followed by processing resulting DAO and asphalt fractions. The DAO fraction is hydrocracked, resulting in removal of sulfur and hydrocarbons which boil at temperatures over 370° C., and gasifying the asphalt portion.
Owner:JGC CATALYSTS & CHEM LTD +2

Gas turbine fuel oil and production method thereof and power generation method

Feed oil is subject to atmospheric distillation, to thereby be separated into light oil or light distillate and atmospheric residue oil. The light distillate is catalytically contacted with pressurized hydrogen in the presence of a catalyst, resulting in a first hydrotreating step being executed. In this instance, various fractions of the light distillate produced in the atmospheric distillation are subject to hydrotreating in a lump. The atmospheric residue oil is then separated into a light matter and a heavy matter. The light matter is subject to second hydrotreating in the presence of a catalyst to produce refined oil (light matter), which is mixed with refined oil produced in the first hydrotreating to prepare a mixture. The mixture is used as gas turbine fuel oil.
Owner:JGC CORP

Method of and apparatus for processing heavy hydrocarbon feeds

The present invention comprises a method for processing a heavy hydrocarbon feed including: supplying the heavy hydrocarbon feed to a heater for heating the heavy hydrocarbon feed; supplying the heated heavy hydrocarbon feed to an atmospheric fractionating tower for fractionating the heated heavy hydrocarbon feed fed to the inlet of the atmospheric fractionating tower producing light atmospheric fractions and atmospheric bottoms; supplying the atmospheric bottoms to a further heater for heating the atmospheric bottoms and producing heated atmospheric bottoms; supplying the heated atmospheric bottoms to a vacuum fractionating tower for fractionating the heated atmospheric bottoms and producing light vacuum fractions and vacuum residue; supplying the vacuum residue to a solvent deasphalting (SDA) unit for producing deasphalted oil (DAO) and asphaltenes from the vacuum residue; supplying the deasphalted oil to a deasphalted oil thermal cracker for thermally cracking the deasphalted oil and producing a thermally cracked product which is recycled only to the inlet of the atmospheric fractionating tower; and supplying the light vacuum fractions to a light vacuum fraction thermal cracker for thermally cracking the light vacuum fractions for producing a further cracked product which is recycled only to the inlet of the atmospheric fractionating tower.
Owner:ORMAT IND LTD

Integrated in-line pretreatment and heavy oil upgrading process

A new residuum full hydroconversion slurry reactor system has been developed that allows the catalyst, unconverted oil, products and hydrogen to circulate in a continuous mixture throughout an entire reactor with no confinement of the mixture. The mixture is partially separated in between the reactors to remove only the products and hydrogen while permitting the unconverted oil and the slurry catalyst to continue on into the next sequential reactor. In the next reactor, a portion of the unconverted oil is converted to lower boiling point hydrocarbons, once again creating a mixture of unconverted oil, products, hydrogen and slurry catalyst. Further hydroprocessing may occur in additional reactors, fully converting the oil. The oil may alternately be partially converted, leaving a highly concentrated catalyst in unconverted oil which can be recycled directly to the first reactor. The slurry reactor system is, in this invention, preceded by an in-line pretreating step, such as hydrotreating or deasphalting. Following the slurry reactor system, fully converted oil may be subsequently hydrofinished for the removal of hetoroatoms such as sulfur and nitrogen.
Owner:CHEVROU USA INC

Asphalt composition and method

A paving asphalt composition for improving the durability and longevity of asphalt road surfaces is disclosed. The paving asphalt composition includes asphalt base stock, heavy residuum of re-refined motor oil, and a chemical modifier. The heavy residuum of re-refined motor oil preferably has an API gravity of at least about 12, a kinematic viscosity greater than about 400 centistokes at 140 DEG F., a flash point greater than about 400 DEG F. and a mass loss less than about 3%. The paving asphalt composition may also include a polymer. A method of forming the paving asphalt composition and a method of paving roads are also disclosed.
Owner:CROWN ASPHALT DISTRIBUTION L L C

Integrated Solvent Deasphalting and Slurry Hydrocracking Process

Integrated slurry hydrocracking (SHC) and coking methods for making slurry hydrocracking (SHC) distillates are disclosed. Representative methods involve passing a slurry comprising a deasphalted oil (DAO) produced in a solvent deasphalting (SDA) process, optionally with recycled SHC gas oil and recycled SHC pitch, and a solid particulate through an SHC reaction zone in the presence of hydrogen to obtain the SHC distillate. Recovery and recycle of SHC gas oil and pitch from the SHC effluent improves the overall conversion to naphtha and distillate products and decreases catalyst requirements.
Owner:UOP LLC

System and method for manufacturing asphalt products with recycled asphalt shingles

InactiveUS20140014000A1Minimize moisturePrevent excessive foamingIn situ pavingsRoof covering using tiles/slatesAsphalt shingleSlurry
A method for manufacturing a processed asphalt suspension is provided. The method includes dry grinding shingle waste material to a particle size of less than 1 cm, forming ground recycled shingle material, introducing virgin asphalt into a heated slurry tank and mixing the ground recycled shingle material with the virgin asphalt in the heated slurry tank, forming a mixed asphalt slurry, introducing the mixed asphalt slurry into a wet grinding machine, and recovering a processed asphalt suspension comprising particles having a size no greater than about 200 microns. Roofing and paving products manufactured from the processed asphalt suspension are also provided.
Owner:HERITAGE ENVIRONMENTAL SERVICES

Fine purification method for coal tar pitch

The invention relates to a coal tar pitch refining method, in particular to a method for refining pitch for coal tar pitch needle coke, impregnant and binding agent for manufacturing high-power and ultrahigh-power graphite electrodes and pitch for manufacturing coal tar pitch carbon fibers. The method is characterized in that the method comprises the following steps: diluting coal tar pitch and the liquid containing coal tar pitch with organic solvent at a weight ratio of the organic solvent to coal tar pitch and the liquid containing coal tar pitch of 1:(5 to 30), removing impurities in the pitch solution by the combination of separation by a centrifuge and filtering with an organic film, and distilling and recovering the solvent in the refined mixture solution to obtain the coal tar pitch free of quinoline insoluble materials. The method has the advantages of good continuity of the separation process and high efficiency, and the pitch contains no quinoline insoluble materials.
Owner:ZIBO MINING GRP

System for upgrading of heavy hydrocarbons

Systems and methods for processing one or more hydrocarbons are provided. One or more hydrocarbons can be selectively separated to provide one or more heavy deasphalted oils. At least a portion of the heavy deasphalted oil can be cracked using a fluidized catalytic cracker to provide one or more lighter hydrocarbon products.
Owner:KELLOGG BROWN & ROOT LLC

Process to enhance oxidation stability of base oils by analysis of olefins using ¹H NMR

A process for producing a lubricating base oil having high oxidation stability, wherein the feed used to prepare the lubricating base oil contains at least 5 wt. % olefms, said process comprising (a) determining the weight percent of olefins present in the feed by means of 1H NMR; (b) hydroprocessing the feed under hydroprocessing conditions selected to reduce the amount of olefins present to a target value which has been pre-determined by means of 1H NMR to produce a lubricating base oil having the desired oxidation stability; and (c) collecting a lubricating base oil having the selected oxidation stability from the hydroprocessing zone.
Owner:CHEVROU USA INC

Lubricating base oil and lubricating oil composition

The invention provides a lubricating base oil with a saturated component content of 90% by mass or greater, a proportion of cyclic saturated components of no greater than 40% by mass of the saturated components, a viscosity index of 110 or greater, an aniline point of 106 or greater and an ε-methylene proportion of 14-20% of the total constituent carbons, as well as a lubricating oil composition comprising the lubricating base oil.
Owner:NIPPON OIL CORP +1

Disposition of steam cracked tar

In the invention, tar is upgraded by deasphalting and then hydrocracking to produce valuable products such as low sulfur diesel fuel and mogas. The invention is also directed to a system integrating a pyrolysis furnace operation with refinery operations.
Owner:EXXONMOBIL CHEM PAT INC

Products produced form rapid thermal processing of heavy hydrocarbon feedstocks

The present invention is directed to the upgrading of heavy hydrocarbon feedstock that utilizes a short residence pyrolytic reactor operating under conditions that cracks and chemically upgrades the feedstock. The process of the present invention provides for the preparation of a partially upgraded feedstock exhibiting reduced viscosity and increased API gravity. This process selectively removes metals, salts, water and nitrogen from the feedstock, while at the same time maximizes the yield of the liquid product, and minimizes coke and gas production. Furthermore, this process reduces the viscosity of the feedstock in order to permit pipeline transport, if desired, of the upgraded feedstock with little or no addition of diluents. The method for upgrading a heavy hydrocarbon feedstock comprises introducing a particulate heat carrier into an upflow reactor, introducing the heavy hydrocarbon feedstock into the upflow reactor at a location above that of the particulate heat carrier so that a loading ratio of the particulate heat carrier to feedstock is from about 15:1 to about 200:1, allowing the heavy hydrocarbon feedstock to interact with the heat carrier with a residence time of less than about 1 second, to produce a product stream, separating the product stream from the particulate heat carrier, regenerating the particulate heat carrier, and collecting a gaseous and liquid product from the product stream. This invention also pertains to the products produced by the method.
Owner:IVANHOE HTL GASOLINEEUM

Separation of tailings that include asphaltenes

ActiveUS20080156702A1Easy and less energy intensiveSeparation easy and lessWorking-up pitch/asphalt/bitumenLiquid hydrocarbon mixture productionHydrocarbon solventsCyclonic separation
Various systems and methods are described that can be used as part of a process to separate bitumen from oil sands. The process may include adding a hydrocarbon solvent to a bitumen containing extract. The tailings from this process may contain a significant amount of solvent. The solvent may be recovered from the tailings with a tailings solvent recovery unit that utilizes negative pressure to significantly reduce the cost of the process in comparison to a conventional steam stripping unit. In one embodiment, the tailings may also separated prior to entering the tailings solvent recovery unit with a gravity separation apparatus or a cyclonic separation apparatus, such as a hydrocyclone.
Owner:CANADIAN NATURAL UPGRADING LTD +1

Incorporation of heat-treated recycled tire rubber in asphalt compositions

Recycled tire rubber, either in the presence or the absence of carbonaceous waste solids such as those from petroleum refinery operations, is first subjected to a heat treatment to release volatile materials and then combined with a liquid asphalt composition to achieve an asphalt mastic that is storage stable and of uniform consistency.
Owner:ELLIS

Method and system for transporting flows of fluid hydrocarbons containing wax, asphaltenes, and/or other precipitating solids

A method and a system for transporting a flow of fluid hydrocarbons containing wax and / or asphaltenes or any other precipitating solids through a treatment and transportation system including a pipeline are disclosed. The flow of fluid hydrocarbons is introduced into a reactor (4), where it is mixed with another fluid flow having a temperature below a crystallization temperature for the wax and / or asphaltenes or other solids and containing particles or crystals acting as nucleating and / or growth cores for the wax and / or asphaltenes or other solids, the mixing temperature providing precipitation of the wax and / or asphaltenes or other solids from the flow of fluid hydrocarbons, and the effluent flow of hydrocarbons and particles is conveyed from the reactor (4) to a pipeline (6) for transportation.
Owner:SINVENT AS +2
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products