Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

303 results about "Slurry reactor" patented technology

Definition of 'slurry reactor'. slurry reactor in Chemical Engineering. A slurry reactor is a reactor in which contact is achieved by suspending a solid in a liquid. The solid-catalyzed reaction of a gas with a liquid can be carried out in a slurry reactor, where fine catalyst particles are suspended in the liquid.

Process for slurry phase hydroconversion of heavy hydrocarbon feeds and/or coal using a supported catalyst

The invention concerns a process for converting heavy feeds carried out in a slurry reactor in the presence of hydrogen and in the presence of a catalyst comprising at least one catalytic metal or a compound of a catalytic metal from group VIB and / or VIII supported on alumina, the pore structure of which is composed of a plurality of juxtaposed agglomerates each formed by a plurality of acicular platelets, the platelets of each agglomerate being generally radially oriented with respect to the others and with respect to the centre of the agglomerate, said catalyst having an irregular and non-spherical shape and being mainly in the form of fragments, obtained using a process including the following steps:a) granulation starting from an active alumina powder having a low crystallinity and / or amorphous structure, to obtain agglomerates in the form of beads;b) maturing in a moist atmosphere between 60° C. and 100° C. then drying said beads;c) sieving to recover a fraction of said beads;d) crushing said fraction;e) calcining at least a portion of said crushed fraction at a temperature in the range 250° C. to 900° C.;f) impregnating with acid and hydrothermal treatment at a temperature in the range 80° C. to 250° C.;g) drying then calcining at a temperature in the range 500° C. to 1100° C.h) depositing at least one catalytic metal or compound of a catalytic metal from group VIB and / or group VIII by impregnation.The process of the invention employs a catalyst with a specific pore texture, shape and granulometry, resulting in improved performances.
Owner:INST FR DU PETROLE

Fischer-Tropsch synthesis catalyst and preparation method and application thereof

The invention relates to a micro-spherical iron-based catalyst which contains transition metal additive, has high performance and is applicable to the Fischer-Tropsch synthesis of a slurry reactor, and a preparation method and the application thereof; and the weight composition of the catalyst is as follows: Fe: transition metal additive M: structural additive (SiO2 or / and Al2O3):K=100:1 to 50:1 to 50:0.5 to 10. The preparation method of the catalyst comprises the following steps: adding the structural additive into Fe / M mixed nitrate solution, co-precipitating with ammonia to prepare slurry; filtering and washing the slurry to obtain a filter cake; and adding the required amount of K additive and water into the filter cake, beating, spraying, drying and calcining to obtain the Fischer-Tropsch synthesis iron-based catalyst of the micro-spherical slurry reactor. The catalyst prepared by the method has good anti-wear performance, the distribution scope of the grain size of the catalyst is narrow, the synthesis gas conversion capability is high, the product selectivity is good and the time-space yield is high, and the Fischer-Tropsch synthesis reaction of the slurry reactor can be carried out within a wider scope of temperature simultaneously.
Owner:SYNFUELS CHINA TECH CO LTD

Oil-soluble self-vulcanizing molybdenum catalyst, and preparation method, use method and application of oil-soluble self-vulcanizing molybdenum catalyst

The invention provides an oil-soluble self-vulcanizing molybdenum catalyst, and a preparation method, a use method and an application of the oil-soluble self-vulcanizing molybdenum catalyst. The preparation method comprises the following steps of (1) sequentially putting a molybdenum source, water, sodium sulfide, a solvent and inorganic acid in a container under the protection of nitrogen, uniformly mixing and stirring, cooling to 5-50 DEG C for reaction for 10-150min, (2) adding alkylamine and carbon disulfide, uniformly stirring, heating to 60-200 DEG C for reaction for 3-10h, and (3) after reaction, sufficiently cooling a product, performing suction filtration, sufficiently washing with methanol, and drying to obtain the oil-soluble self-vulcanizing molybdenum catalyst. The oil-soluble self-vulcanizing molybdenum catalyst can be vulcanized and decomposed to form a molybdenum disulfide active component in situ, is used for a slurry reactor hydrocracking technology for poor heavy oil with a high metal content, a high carbon residue content and a high sulfur content, can reduce the coke yield, and keeps long-period operation of a device.
Owner:CHINA UNIV OF PETROLEUM (EAST CHINA)

Method for preparing ethylene through liquid-phase selective hydrogenation of acetylene in slurry reactor

The invention belongs to the technical field of chemical material preparing methods, and particularly relates to a method for preparing ethylene through liquid-phase selective hydrogenation of acetylene in a slurry reactor. A liquid-phase solvent with high selective solubility for acetylene and low selective solubility for ethylene is introduced into a gas-solid catalytic system, and the relative solubility coefficient of the solvent is larger than 8; a catalyst is dispersed evenly in the liquid-phase solvent, and process coupling is achieved through the high selective solubility of the liquid-phase solvent for acetylene, so that the selectivity of ethylene is improved; and ethylene is prepared and separated through an hydrogenation reaction of acetylene. According to the method, the concentration of ethylene on the surface of the catalyst is reduced through the process coupling, therefore a path of ethane generation through deep hydrogenation is blocked to a certain extent, and the selectivity of ethylene can be improved remarkably. Simultaneously, the liquid-phase dilution thermal effect can accelerate heat transfer in the slurry reactor, and temperature runaway is avoided. The method is not only used for preparing ethylene from acetylene obtained from natural gas pyrolysis, but also is an efficient method in a process for removing acetylene in ethylene.
Owner:TSINGHUA UNIV

Preparation and application of carbon modified silicon dioxide carrier loaded iron-based catalyst for Fischer-Tropsch synthesis

The invention discloses a preparation and an application of a carbon modified silicon dioxide carrier loaded iron-based catalyst for Fischer-Tropsch synthesis. The carbon modified silicon dioxide with second-level hole structure is taken as a carrier of the carrier provided by the invention and iron is taken as a main catalyst and auxiliaries are added; the second-level hole structure is composed of a primary silicon dioxide macro-porous structure and a carbon film layer modified small-porous structure; the second-level hole structure is beneficial to the promotion of the dispersion of active component iron, can prevent iron and silicon dioxide carrier from forming unreducible ferrosilite, can boost the carbonization and activation of iron and can effectively restrain the secondary hydrogenation of Fischer-Tropsch primary product so as to acquire high Fischer-Tropsch reaction activity and selectivity of olefin products. Besides, the catalyst provided by the invention has excellent mechanical strength and hydrothermal stability and is fit for the Fischer-Tropsch synthesis of slurry reactor and fluidized bed; the raw materials for preparing the catalyst are low in cost; the preparation method is simple; the repeatability is excellent; the catalyst is fit for industrial production application.
Owner:JIANGNAN UNIV

Hydrotreating combined process for inferior heavy oil and residual oil

The invention relates to a hydrotreating combined process for inferior heavy oil and residual oil. The hydrotreating combined process comprises the following steps of: firstly pretreating the heavy oil and/or residual oil raw material in a slurry reactor; carrying out gas-liquid separation, and hydro-upgrading the liquid-phase product in a fixed bed, wherein the hydro-pretreating part of the slurry reactor comprises a straight cylinder type slurry reactor pretreatment reactor and a slurry reactor hydro-catalyst, and the reactors used in the fixed bed hydro-upgrading part sequentially and mainly include two parallel up-flow type deferrization-decalcification reactors, one up-flow type demetalization reactor, one fixed bed desulfurization reactor and one fixed bed denitrification reactor. By adopting the hydrotreating combined process provided by the invention, not only are the hydrotreating and impurity removal capacities of the catalyst improved, but also the running cycle of the device is prolonged. The hydrotreating combined process provided by the invention can be applied to treating the inferior heavy oil and residual oil, which are high in sulfur content, metal content, and asphalt content; the conversion ratio is 30-80%; the raising rate of the pressure drop of the reactors can be effectively reduced so as to achieve the long-period running of the device.
Owner:PETROCHINA CO LTD

Application of raney nickel as slurry reactor to synthesize methane catalyst

InactiveCN102942971AWith characteristicsHave made significant progressGaseous fuelsLiquid mediumSlurry reactor
The invention provides the application of raney nickel as a slurry reactor to synthesize a methane catalyst, including: adding a raney nickel catalyst dispersed in an inert liquid medium to a reactor for a methanation reaction, feeding product gas and raw material gas to a separator, discharging a liquid phase component I composed of the liquid phase component and the catalyst component in the product gas from the bottom of the separator I, discharging gas phase I from the top of the separator, discharging a part of the inert liquid medium containing the catalyst from the middle of the reactor into a separator II, discharging gas phase II from the top of the separator II, mixing the gas phase II with the gas phase I to get a natural gas product, discharging the inert liquid medium of the catalyst from the bottom of the separator II to mix with the liquid phase component I to get a mixture, and feeding the mixture and the fresh methanation catalyst dispersed in the inert liquid medium together into the reactor for the methanation reaction. The application has the advantages that the raney nickel catalyst does not need reduction, has high mechanical strength and good wear resistance, and can satisfy the requirement of slurry reactor methanation process for low temperature activity.
Owner:TAIYUAN UNIV OF TECH +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products