Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

118results about How to "Highly reliable semiconductor" patented technology

Oxide semiconductor film and semiconductor device

An oxide semiconductor film which has more stable electric conductivity is provided. Further, a semiconductor device which has stable electric characteristics and high reliability is provided by using the oxide semiconductor film. An oxide semiconductor film includes a crystalline region, and the crystalline region includes a crystal in which an a-b plane is substantially parallel with a surface of the film and a c-axis is substantially perpendicular to the surface of the film; the oxide semiconductor film has stable electric conductivity and is more electrically stable with respect to irradiation with visible light, ultraviolet light, and the like. By using such an oxide semiconductor film for a transistor, a highly reliable semiconductor device having stable electric characteristics can be provided.
Owner:SEMICON ENERGY LAB CO LTD

Semiconductor device and method of fabricating the same

There is provided a crystalline TFT in which reliability comparable to or superior to a MOS transistor can be obtained and excellent characteristics can be obtained in both an on state and an off state. A gate electrode of the crystalline TFT is formed of a laminate structure of a first gate electrode made of a semiconductor material and a second gate electrode made of a metal material. An n-channel TFT includes an LDD region, and a region overlapping with the gate electrode and a region not overlapping with the gate electrode are provided, so that a high electric field in the vicinity of a drain is relieved, and at the same time, an increase of an off current is prevented.
Owner:SEMICON ENERGY LAB CO LTD

Semiconductor device

A highly portable semiconductor device and the like providing improved browsability of display. Provided is a semiconductor device including a flexible display panel, a first housing supporting a first region of the display panel, a second housing supporting a second region of the display panel, and a flexible base material firmly attached to the first housing. The display panel can be deformed into an open position where the first and second regions are substantially on the same plane or into a folded position where the first and second regions overlap with each other. The second housing includes a groove portion where the flexible base material can partly slide. Part of the flexible base material is inserted into the groove portion in the open position. The part of the flexible base material which is inserted into the groove portion is at least partly withdrawn in a deformation into the folded position.
Owner:SEMICON ENERGY LAB CO LTD

Semiconductor device and manufacturing method thereof

A semiconductor device for high power application in which a novel semiconductor material having high mass productivity is provided. An oxide semiconductor film is formed, and then, first heat treatment is performed on the exposed oxide semiconductor film in order to reduce impurities such as moisture or hydrogen in the oxide semiconductor film. Next, in order to further reduce impurities such as moisture or hydrogen in the oxide semiconductor film, oxygen is added to the oxide semiconductor film by an ion implantation method, an ion doping method, or the like, and after that, second heat treatment is performed on the exposed oxide semiconductor film.
Owner:SEMICON ENERGY LAB CO LTD

Semiconductor device and semiconductor device manufacturing method

The object of the present invention is to efficiently dissipate heat from the upper and lower main surfaces of a semiconductor device carrying a semiconductor element. A semiconductor device (1) is provided with an insulating substrate (10A), an insulating substrate (10B) provided so as to face the insulating substrate (10A), and a semiconductor element (20) disposed between the insulating substrate (10A) and the insulating substrate (10B) and having a collector electrode and an emitter electrode provided on the side opposite to that of the collector electrode. The collector electrode is electrically connected to a metal foil (10ac) provided on the insulating substrate (10A), and the emitter electrode is electrically connected to the metal foil (10bc) provided on the insulating substrate (10B). As a result, heat generated by the semiconductor element (20) is efficiently dissipated from the upper and lower main surfaces of the semiconductor device (1).
Owner:FUJI ELECTRIC CO LTD

Semiconductor device and method for manufacturing the same

It is an object to provide a highly reliable semiconductor device including a thin film transistor whose electric characteristics are stable. In addition, it is another object to manufacture a highly reliable semiconductor device at low cost with high productivity. In a semiconductor device including a thin film transistor, a semiconductor layer of the thin film transistor is formed with an oxide semiconductor layer to which a metal element is added. As the metal element, at least one of metal elements of iron, nickel, cobalt, copper, gold, manganese, molybdenum, tungsten, niobium, and tantalum is used. In addition, the oxide semiconductor layer contains indium, gallium, and zinc.
Owner:SEMICON ENERGY LAB CO LTD

Semiconductor device and manufacturing method thereof

A semiconductor device includes a first oxide insulating layer over a first insulating layer, an oxide semiconductor layer over the first oxide insulating layer, a source electrode layer and a drain electrode layer over the oxide semiconductor layer, a second insulating layer over the source electrode layer and the drain electrode layer, a second oxide insulating layer over the oxide semiconductor layer, a gate insulating layer over the second oxide insulating layer, a gate electrode layer over the gate insulating layer, and a third insulating layer over the second insulating layer, the second oxide insulating layer, the gate insulating layer, and the gate electrode layer. A side surface portion of the second insulating layer is in contact with the second oxide insulating layer. The gate electrode layer includes a first region and a second region. The first region has a width larger than that of the second region.
Owner:SEMICON ENERGY LAB CO LTD

Semiconductor device and manufacturing method thereof

A semiconductor device for high power application in which a novel semiconductor material having high mass productivity is provided. An oxide semiconductor film is formed, and then, first heat treatment is performed on the exposed oxide semiconductor film in order to reduce impurities such as moisture or hydrogen in the oxide semiconductor film. Next, in order to further reduce impurities such as moisture or hydrogen in the oxide semiconductor film, oxygen is added to the oxide semiconductor film by an ion implantation method, an ion doping method, or the like, and after that, second heat treatment is performed on the exposed oxide semiconductor film.
Owner:SEMICON ENERGY LAB CO LTD

Polishing fluid and polishing method

ActiveUS20050181609A1Increase chanceSuperior in dimensional accuracy and electric characteristicOther chemical processesSemiconductor/solid-state device manufacturingDevice materialSlurry
A polishing slurry including an oxidant, a metal oxide dissolver, a metal inhibitor and water and having a pH from 2 to 5. The metal oxide dissolver contains one or more types selected from one or more acids (A-group) selected from acids of which the dissociation constant (pKa) of a first dissociable acid group is less than 3.7 and from which five acids of lactic acid, phthalic acid, fumaric acid, maleic acid and aminoacetic acid are excluded, ammonium salts of the A-group and esters of the A-group, and one or more types selected from one or more acids (B-group) selected from acids of which the dissociation constant (pKa) of a first dissociable acid group is 3.7 or more and the five acids, ammonium salts of the B-group and esters of the B-group. The metal inhibitor contains one or more types selected from the group consisting of aromatic compounds having a triazole skeleton and one or more types selected from the group consisting of aliphatic compounds having a triazole skeleton and compounds having any one of pyrimidine skeleton, imidazole skeleton, guanidine skeleton, thiazole skeleton and pyrazole skeleton. The polishing slurry having a high metal-polishing rate, reducing etching rate and polishing friction, results in the production, with high productivity, of semiconductor devices reduced in dishing and erosion in metal wiring.
Owner:HITACHI CHEM CO LTD

Method of fabricating a semiconductor device

There is provided a thin film transistor having improved reliability. A gate electrode includes a first gate electrode having a taper portion and a second gate electrode with a width narrower than the first gate electrode. A semiconductor layer is doped with phosphorus of a low concentration through the first gate electrode. In the semiconductor layer, two kinds of n−-type impurity regions are formed between a channel formation region and n+-type impurity regions. Some of the n−-type impurity regions overlap with a gate electrode, and the other n−-type impurity regions do not overlap with the gate electrode. Since the two kinds of n−-type impurity regions are formed, an off current can be reduced, and deterioration of characteristics can be suppressed.
Owner:SEMICON ENERGY LAB CO LTD

Oxide semiconductor film and semiconductor device

An oxide semiconductor film which has more stable electric conductivity is provided. Further, a semiconductor device which has stable electric characteristics and high reliability is provided by using the oxide semiconductor film. An oxide semiconductor film includes a crystalline region, and the crystalline region includes a crystal in which an a-b plane is substantially parallel with a surface of the film and a c-axis is substantially perpendicular to the surface of the film; the oxide semiconductor film has stable electric conductivity and is more electrically stable with respect to irradiation with visible light, ultraviolet light, and the like. By using such an oxide semiconductor film for a transistor, a highly reliable semiconductor device having stable electric characteristics can be provided.
Owner:SEMICON ENERGY LAB CO LTD

Semiconductor device

A silicide film is formed between a ferroelectric capacitor structure, which is formed by sandwiching a ferroelectric film between a lower electrode and an upper electrode, and a conductive plug (the conductive material constituting the plug is tungsten (W) for example). Here, an example is shown in which a base film of the conductive plug is the silicide film.
Owner:FUJITSU SEMICON LTD

Sputtering target and manufacturing method thereof, and transistor

One object is to provide a deposition technique for forming an oxide semiconductor film. By forming an oxide semiconductor film using a sputtering target including a sintered body of a metal oxide whose concentration of hydrogen contained is low, for example, lower than 1×1016 atoms / cm3, the oxide semiconductor film contains a small amount of impurities such as a compound containing hydrogen typified by H2O or a hydrogen atom. In addition, this oxide semiconductor film is used as an active layer of a transistor.
Owner:SEMICON ENERGY LAB CO LTD

Sputtering target and method for using the same

To form an oxide film with a high degree of crystallinity, which includes a plurality of metal elements. Further, to provide a sputtering target which enables the oxide film to be formed and a method for using the sputtering target. The sputtering target includes a polycrystalline oxide containing a plurality of crystal grains whose average grain size is less than or equal to 3 μm. The plurality of crystal grains each have a cleavage plane. When the sputtering target includes a plurality of crystal grains whose average grain size is less than or equal to 3 μm, by making an ion collide with the sputtering target, a sputtered particle can be separated from the cleavage plane of the crystal grain.
Owner:SEMICON ENERGY LAB CO LTD

Semiconductor device and method for manufacturing the same

In the transistor including an oxide semiconductor film, which includes a film for capturing hydrogen from the oxide semiconductor film (a hydrogen capture film) and a film for diffusing hydrogen (a hydrogen permeable film), hydrogen is transferred from the oxide semiconductor film to the hydrogen capture film through the hydrogen permeable film by heat treatment. Specifically, a base film or a protective film of the transistor including an oxide semiconductor film has a stacked-layer structure of the hydrogen capture film and the hydrogen permeable film. At this time, the hydrogen permeable film is formed on a side which is in contact with the oxide semiconductor film. After that, hydrogen released from the oxide semiconductor film is transferred to the hydrogen capture film through the hydrogen permeable film by the heat treatment.
Owner:SEMICON ENERGY LAB CO LTD

Semiconductor device

ActiveUS20130187151A1Reduce probabilityFavorable transistor characteristicTransistorCandlesOxide semiconductorChannel width
Provided is a transistor which has favorable transistor characteristics and includes an oxide semiconductor, and a highly reliable semiconductor device which includes the transistor including the oxide semiconductor. In the semiconductor device including the transistor in which an oxide semiconductor film, a gate insulating film, and a gate electrode are stacked in this order, a sidewall insulating film is formed along side surfaces and a top surface of the gate electrode, and the oxide semiconductor film is subjected to etching treatment so as to have a cross shape having different lengths in the channel length direction or to have a larger length than a source electrode and a drain electrode in the channel width direction. Further, the source electrode and the drain electrode are formed in contact with the oxide semiconductor film.
Owner:SEMICON ENERGY LAB CO LTD

Semiconductor device and method for manufacturing the same

A semiconductor device formed using an oxide semiconductor layer and having small electrical characteristic variation is provided. A highly reliable semiconductor device including an oxide semiconductor layer and exhibiting stable electric characteristics is provided. Further, a method for manufacturing the semiconductor device is provided. In the semiconductor device, an oxide semiconductor layer is used for a channel formation region, a multilayer film which includes an oxide layer in which the oxide semiconductor layer is wrapped is provided, and an edge of the multilayer film has a curvature in a cross section.
Owner:SEMICON ENERGY LAB CO LTD

Semiconductor device and method for producing the same

A semiconductor device is configured that a high-withstand voltage semiconductor device (101) and logic circuits (201 and 301) are integrated on a single chip and that a high-withstand voltage high-potential island (402) including the high-potential-side logic circuit (301) is separated using multiple partition walls enclosing therearound. The semiconductor device is provided with a multi-trench separation region (405) having a level shift wire region (404) that is used to connect the high-potential-side logic circuit to the high-potential-side electrode of the high-withstand voltage semiconductor device.
Owner:MITSUBISHI ELECTRIC CORP

Semiconductor device and method for manufacturing the same

In the transistor including an oxide semiconductor film, a gate insulating film of the transistor including an oxide semiconductor film has a stacked-layer structure of the hydrogen capture film and the hydrogen permeable film. At this time, the hydrogen permeable film is formed on a side which is in contact with the oxide semiconductor film, and the hydrogen capture film is formed on a side which is in contact with a gate electrode. After that, hydrogen released from the oxide semiconductor film is transferred to the hydrogen capture film through the hydrogen permeable film by the heat treatment.
Owner:SEMICON ENERGY LAB CO LTD

Oxide semiconductor film and semiconductor device

Provided is an oxide semiconductor film which has more stable electric characteristics and essentially consists of indium zinc oxide. In addition, provided is a highly reliable semiconductor device which has stable electric characteristics by using the oxide semiconductor film. The oxide semiconductor film essentially consisting of indium zinc oxide has a hexagonal crystal structure in which the a-b plane is substantially parallel to a surface of the oxide semiconductor film and a rhombohedral crystal structure in which the a-b plane is substantially parallel to the surface of the oxide semiconductor film.
Owner:SEMICON ENERGY LAB CO LTD

Semiconductor device utilizing dummy features to form uniform sidewall structures

An inventive semiconductor device includes: a substrate; a plurality of first projections each including at least a gate electrode and formed on the substrate; and a plurality of second projections formed on the substrate. When a contour surface constituted by the uppermost face of the substrate and by side and upper faces of the first and second projections is measured for every partial area per unit area of the substrate, the maximum partial area of the contour surface is 1.6 or less times larger than the minimum partial area of the contour surface.
Owner:PANASONIC CORP

Semiconductor Device and Method for Fabricating the Same

In a semiconductor device including: an insulating film (6) formed over a substrate (1); a buried metal interconnect (10) formed in the insulating film (6); and a barrier metal film (A1) formed between the insulating film (6) and the metal interconnect (10), the barrier metal film (A1) includes a metal oxide film (7), a metal compound film (8) and a metal film (9) stacked in this order from a side in which the insulating film (6) exists to a side in which the metal interconnect (10) exists. Elastic modulus of the metal compound film (8) is larger than that of the metal oxide film (7).
Owner:PANNOVA SEMIC

Semiconductor device and electronic device including the semiconductor device

A semiconductor device includes a first oxide semiconductor film, a second oxide semiconductor film over the first oxide semiconductor film, a source electrode in contact with the second oxide semiconductor film, a drain electrode in contact with the second oxide semiconductor film, a metal oxide film over the second oxide semiconductor film, the source electrode, and the drain electrode, a gate insulating film over the metal oxide film, and a gate electrode over the gate insulating film. The metal oxide film contains M (M represents Ti, Ga, Y, Zr, La, Ce, Nd, or Hf) and Zn. The metal oxide film includes a portion where x / (x+y) is greater than 0.67 and less than or equal to 0.99 when a target has an atomic ratio of M:Zn=x:y.
Owner:SEMICON ENERGY LAB CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products