Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

112 results about "Active edge" patented technology

Electrosurgical systems and methods for removing and modifying tissue

InactiveUS7824398B2Thermal damage is minimizedMinimize damageCannulasEnemata/irrigatorsEngineeringNon targeted
The present invention provides systems, apparatus and methods for selectively applying electrical energy to body tissue in order to, ablate, contract, coagulate, or otherwise modify a tissue or organ of a patient. An electrosurgical apparatus includes an electrode support bearing an active electrode in the form of a plasma blade or hook having an active edge and first and second blade sides. The active edge is adapted for severing a target tissue via localized molecular dissociation of tissue components. The first and second blade sides are adapted for engaging against, and coagulating, the severed tissue. s. A method of the present invention comprises positioning an electrosurgical probe adjacent to the target tissue so that a blade- or hook-like active electrode is brought into at least close proximity to the target tissue in the presence of an electrically conductive fluid. A high frequency voltage is applied between the active electrode and a return electrode to effect cool ablation or other modification of the target tissue. During application of the high frequency voltage, the electrosurgical apparatus may be translated, reciprocated, or otherwise manipulated such that the active edge is moved with respect to the tissue. The present invention volumetrically ablates or otherwise modifies the target tissue with minimal or no damage to surrounding, non-target tissue.
Owner:ARTHROCARE

Molybdenum disulfide/MIL-101 composite photocatalyst material as well as preparation method and application thereof

ActiveCN106582880AExcellent composite photocatalytic performanceEfficient degradation treatmentWater/sewage treatment by irradiationWater treatment compoundsActive edgeHydrofluoric acid
The invention belongs to the technical field of photocatalyst materials and discloses a molybdenum disulfide/MIL-101 composite photocatalyst material, a preparation method thereof and application in the field of antibiotic wastewater degradation treatment, in particular application in the field of degradation of antibiotic wastewater containing ciprofloxacin. The preparation method comprises the following steps: dissolving chromic nitrate, terephthalic acid and hydrofluoric acid into water, uniformly stirring, heating and reacting to obtain MIL-101; dissolving sodium molybdate and thioacetamide into water, uniformly stirring, then adding the MIL-101 obtained in the step (1), uniformly stirring, heating and reacting to obtain the MoS2/MIL-101 composite photocatalyst material. The photocatalyst material disclosed by the invention contains highly dispersed MoS2 nanosheets and more exposed MoS2 active edges, has excellent composite photocatalytic performance and can be applied to antibiotic wastewater degradation treatment, especially realization of efficient degradation treatment on the antibiotic wastewater containing ciprofloxacin.
Owner:华工同创(东莞)环保技术有限公司

Electrosurgical systems and methods for removing and modifying tissue

The present invention provides systems, apparatus and methods for selectively applying electrical energy to body tissue in order to ablate, contract, coagulate, or otherwise modify a tissue or organ of a patients. An electrosurgical apparatus includes an electrode support bearing an active electrode in the form of a plasma blade or hook having an active edge and first and second blade sides. The active edge is adapted for severing a target tissue via localized molecular dissociation of tissue components. The first and second blade sides are adapted for engaging against, and coagulating, the severed tissue. A method of the present invention comprises positioning an electrosurgical probe adjacent to the target tissue so that a blade- or hook-like active electrode is brought into at least close proximity to the target tissue in the presence of an electrically conductive fluid. A high frequency voltage is applied between the active electrode and a return electrode to effect cool ablation or other modification of the target tissue. During application of the high frequency voltage, the electrosurgical apparatus may be translated, reciprocated, or otherwise manipulated such that the active edge is moved with respect to the tissue. The present invention volumetrically ablates or otherwise modifies the target tissue with minimal or no damage to surrounding, non-target tissue.
Owner:ARTHROCARE

Digital TDMA link with no sync word

The portion of TDMA frames otherwise containing the sync word is eliminated for one or more data frames at the end of a TDMA data burst to provided added bandwidth for data payload or for a reduced bandwidth. Once a communication channel has been established and is in steady state mode (after receipt of one or more frames), the sync word is eliminated from the remaining frame structure. Drift of a local clock with respect to an incoming data stream is monitored using an oversampled or multiplied master clock to provide suitable resolution to determine an approximate position of an active edge of the master clock with respect to a bit or symbol being clocked. Any drift from center results in an adjustment of the local master clock. In a preferred embodiment, the drift is measured in a last bit or symbol of a received TDMA burst, and the master clock is adjusted to re-center the local master clock with respect to that last bit. Accordingly, the receiver is "tuned' to the clock signal of the transmitting TDMA device such that the receiving TDMA device can predict where the next start of frame will occur. By doing so, the sync word is no longer necessary in the remaining frames of the TDMA burst to decode the start of next TDMA frame. The sync word may be included in more than one frames in the beginning of the TDMA burst, but is eliminated from one or more frames at the end of the TDMA burst.
Owner:AGERE SYST GUARDIAN
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products