Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

30 results about "Far field radiation pattern" patented technology

In the field of antenna design the term radiation pattern (or antenna pattern or far-field pattern) refers to the directional (angular) dependence of the strength of the radio waves from the antenna or other source.

Solid state optical phased array lidar and method of using same

A lidar-based apparatus and method are used for the solid state steering of laser beams using Photonic Integrated Circuits. Integrated optic design and fabrication micro- and nanotechnologies are used for the production of chip-scale optical splitters that distribute an optical signal from a laser essentially uniformly to an array of pixels, said pixels comprising tunable optical delay lines and optical antennas. Said antennas achieve out-of-plane coupling of light.As the delay lines of said antenna-containing pixels in said array are tuned, each antenna emits light of a specific phase to form a desired far-field radiation pattern through interference of these emissions. Said array serves the function of solid state optical phased array.By incorporating a large number of antennas, high-resolution far-field patterns can be achieved by an optical phased array, supporting the radiation pattern beam forming and steering needed in solid state lidar, as well as the generation of arbitrary radiation patterns as needed in three-dimensional holography, optical memory, mode matching for optical space-division multiplexing, free space communications, and biomedical sciences. Whereas imaging from an array is conventionally transmitted through the intensity of the pixels, the optical phased array allows imaging through the control of the optical phase of pixels that receive coherent light waves from a single source.
Owner:QUANERGY SOLUTIONS INC

Solid state optical phased array lidar and method of using same

A lidar-based apparatus and method are used for the solid state steering of laser beams using Photonic Integrated Circuits. Integrated optic design and fabrication micro- and nanotechnologies are used for the production of chip-scale optical splitters that distribute an optical signal from a laser essentially uniformly to an array of pixels, said pixels comprising tunable optical delay lines and optical antennas. Said antennas achieve out-of-plane coupling of light.As the delay lines of said antenna-containing pixels in said array are tuned, each antenna emits light of a specific phase to form a desired far-field radiation pattern through interference of these emissions. Said array serves the function of solid state optical phased array.By incorporating a large number of antennas, high-resolution far-field patterns can be achieved by an optical phased array, supporting the radiation pattern beam forming and steering needed in solid state lidar, as well as the generation of arbitrary radiation patterns as needed in three-dimensional holography, optical memory, mode matching for optical space-division multiplexing, free space communications, and biomedical sciences. Whereas imaging from an array is conventionally transmitted through the intensity of the pixels, the optical phased array allows imaging through the control of the optical phase of pixels that receive coherent light waves from a single source.
Owner:QUANERGY SOLUTIONS INC

Rapid and accurate computation method for large-scale MIMO array antenna far-field radiation field

The present invention belongs to the field of electromagnetic value computing, and particularly relates to a rapid and accurate analysis method for large-scale MIMO array antenna far-field radiation. The method comprises: determining a structural parameter of an M*N-element plane array antenna; computing a relationship between an incident field and a scattered field of an element antenna; according to mutual coupling characteristics among element antennas, selecting a sub-array form and size of an extraction unit on an array environment condition; for an antenna sub-array of the extraction unit, computing a unit far-field radiation pattern of the sub-array; and according to the unit far-field radiation patterns of the array and a superposition principle, computing an array antenna far-field radiation pattern. According to the invention, by utilizing the accuracy of mutual coupling computation, the problems that the use of such methods as the moment method, the finite element method and the finite difference time domain (FDTD) method are limited by computing capacity of a single computer, and when the scale of the array antenna is too large, rapid and accurate computation of the antenna radiation field cannot be implemented with a full wave simulation method because of large consumption of memory and computing time, are effectively solved. The method provided by the invention is capable of analyzing the radiation pattern of a large and conformal array antenna, and has higher synthesizing accuracy and higher analysis speed.
Owner:THE PLA INFORMATION ENG UNIV

Accurate and fast calculation method of far-field radiation field of large-scale mimo array antenna

The invention belongs to the field of electromagnetic numerical calculation, and specifically relates to an accurate and fast analysis method for far-field radiation of a large-scale MIMO array antenna, including: determining the structural parameters of the M×N element planar array antenna; solving the relationship between the incident field and the scattering field of the unit antenna; according to Mutual coupling characteristics between unit antennas, select the sub-array form and size of the extraction unit under the array environment conditions; for the antenna sub-array of the extraction unit, solve the far-field radiation pattern of the unit in the sub-array; according to the far-field radiation direction of the unit in the array Figure, according to the principle of superposition to calculate the array antenna far-field radiation pattern. The present invention utilizes the accuracy of mutual coupling calculation to well solve the limitation of the calculation capacity of a single computer in methods such as the method of moments, finite element method, and time domain finite difference, when the scale of the array antenna is too large , the full-wave simulation method cannot quickly and accurately implement the calculation of the antenna radiation field due to the huge consumption of memory and calculation time. It can analyze the pattern of large-scale and conformal array antennas, and has high synthesis accuracy and fast analysis speed. advantage.
Owner:THE PLA INFORMATION ENG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products